Sr(Hg1–x Sn x )4: variations of the EuIn4-type structure

Author:

Wendorff Marco1,Röhr Caroline1

Affiliation:

1. Institut für Anorganische und Analytische Chemie, Universität Freiburg, Albertstr. 21, D-79104 Freiburg, Germany

Abstract

Abstract Starting from the new compound SrHg2Sn2, which is isoelectronic and also isotypic to the indide SrIn4, the successive substitution of Sn against the electron poor Hg has been investigated in a combined synthetic, crystallographic, and bond-theoretical study. Along the 1:4 section Sr(Hg1–x Sn x )4 a series of compounds with Sn contents x between 0.5 and 0.2 were synthesized from stoichiometric ratios of the elements. Their crystal structures, which represent three different variants of the EuIn4-type structure, have been determined using single crystal X-ray data. The most electron rich compound SrHg2Sn2 crystallizes in the original EuIn4-type [monoclinic, C2/m, a = 1257.9(14), b = 490.1(4), c = 997.8(12) pm, β = 117.60(6)°, Z = 4, R1 = 0.0838], with a fully ordered Hg and Sn distribution. The four atom sites form two different folded ladders with an alternating Hg/Sn distribution. Like in the KHg2-type, the ladders are connected via six-membered rings. In between, double tubes with an internal Sn–Sn bond are connected via further Sn–Sn bonds to form sheets similar to those observed in SiAs. The most electron-poor phase SrHg3.2Sn0.8 crystallizes in a strongly distorted variant of this structure [a = 1172.8(4), b = 497.9(2), c = 1010.0(4) pm, β = 118.860(7)°, Z = 4, R1 = 0.0549]. Herein, additional Hg–Hg bonds are formed, and the open tubes are distorted into rods of edge-sharing rhombohedra resembling the structure motifs of elemental Hg. At an intermediate valence electron (v.e.) number, i.e., in SrHg2.5Sn1.5, an isomorphous tripled superstructure (a = 2704.4(5), b = 493.87(7), c = 1197.1(2) pm, β = 90.838(14)°, Z = 12, R1 = 0.0475) occurs, where the building blocks of the two variants of the EuIn4-type structure alternate in a 1:2 ratio. The bonding situation and the “coloring,” i.e., the Hg/Sn distribution in the polyanionic network, are discussed considering the different sizes of the atoms and the charge distribution (Bader AIM charges), which has been calculated within the framework of the FP-LAPW density functional theory for SrHg2Sn2 and the model compounds “SrHg3Sn” and “SrHg4.”

Publisher

Walter de Gruyter GmbH

Subject

General Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3