Affiliation:
1. Department of Computer Engineering , NBN Sinhgad School of Engineering , Ambegaon , Pune , India
2. Bharath University , Chennai 600073 , India
3. Department of Computer Science and Engineering, Bharath Institute of High Education and Research, Bharath University , Chennai 600073 , India
Abstract
Abstract
Iris Recognition at-a Distance (IAAD) is a major challenge for researchers due to the defects associated with the visual imaging and poor image quality in dynamic environments, which imposed bad impacts on the accuracy of recognition. Thus, in order to enable the effective IAAD, this paper proposes a new method, named, Chronological Monarch Butterfly Optimization (Chronological MBO)-enabled Neural Network (NN). The recognition of iris using NN is trained with the proposed Chronological MBO, which is developed through the combination of Chronological theory in Monarch Butterfly Optimization (MBO). The recognition becomes effective with the automatic segmentation and the normalization of iris image on the basis of Hough Transform (HT) and Daugman’s rubber sheet model followed with the process of feature extraction with the developed ScatT-LOOP descriptor, which is the integration of scattering transform (ST), Local Optimal Oriented Pattern (LOOP) descriptor, and Tetrolet transform (TT). The developed ScatT-LOOP descriptor extracts the texture as well as the orientation details of image for effective recognition. The analysis is evaluated with the CASIA Iris dataset with respect to the evaluation metrics, accuracy, False Acceptance Rate (FAR), and False Rejection Rate (FRR). The proposed method has the accuracy, FRR, and FAR of 0.97, 0.005, and 0.005, respectively. The experimental results proved that the proposed method is effective than the existing methods of iris recognition.
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献