Matching pursuit algorithm for enhancing EEG signal quality and increasing the accuracy and efficiency of emotion recognition

Author:

Momennezhad Ali1

Affiliation:

1. Sahand University of Technology , Tabriz-Sahand , 1996-51335 Tabriz , Iran

Abstract

Abstract In this paper, we suggest an efficient, accurate and user-friendly brain-computer interface (BCI) system for recognizing and distinguishing different emotion states. For this, we used a multimodal dataset entitled “MAHOB-HCI” which can be freely reached through an email request. This research is based on electroencephalogram (EEG) signals carrying emotions and excludes other physiological features, as it finds EEG signals more reliable to extract deep and true emotions compared to other physiological features. EEG signals comprise low information and signal-to-noise ratios (SNRs); so it is a huge challenge for proposing a robust and dependable emotion recognition algorithm. For this, we utilized a new method, based on the matching pursuit (MP) algorithm, to resolve this imperfection. We applied the MP algorithm for increasing the quality and SNRs of the original signals. In order to have a signal of high quality, we created a new dictionary including 5-scale Gabor atoms with 5000 atoms. For feature extraction, we used a 9-scale wavelet algorithm. A 32-electrode configuration was used for signal collection, but we used just eight electrodes out of that; therefore, our method is highly user-friendly and convenient for users. In order to evaluate the results, we compared our algorithm with other similar works. In average accuracy, the suggested algorithm is superior to the same algorithm without applying MP by 2.8% and in terms of f-score by 0.03. In comparison with corresponding works, the accuracy and f-score of the proposed algorithm are better by 10.15% and 0.1, respectively. So as it is seen, our method has improved past works in terms of accuracy, f-score and user-friendliness despite using just eight electrodes.

Publisher

Walter de Gruyter GmbH

Subject

Biomedical Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3