Analysis of autonomic nervous pattern in hypertension based on short-term heart rate variability

Author:

Zhang Ruiqi12ORCID,Hua Zhengchun12,Chen Chen12,Liu Guangyuan12,Wen Wanhui12

Affiliation:

1. School of Electronic and Information Engineering, Southwest University , Chongqing , China

2. and Chongqing Key Laboratory of Nonlinear Circuits and Intelligent Information Processing , Chongqing , China

Abstract

Abstract Physiological studies have found that the autonomic nervous system plays an important role in controlling blood pressure values. This paper, based on machine learning approaches, analysed short-term heart rate variability to determine differences in autonomic nervous function between hypertensive patients and normal population. The electrocardiogram (ECG) of hypertensive patients are 137 ECG recordings provided by Smart Health for Assessing the Risk of Events via ECG (SHAREE database). The RR intervals of healthy subjects include the data of 18 subjects from the MIT-BIH Normal Sinus Rhythm Database (nsrdb) and 54 subjects from the Normal Sinus Rhythm RR Interval Database (nsr2db). In this paper, each RR segment includes continuous 500 beats. Seventeen features were extracted to distinguish the hypertensive heart beat rhythms from the normal ones, and Kolmogorov-Smirnov test and sequential backward selection (SBS) were applied to get the best feature combinations. In addition, support vector machine (SVM), k-nearest neighbor (KNN) and random forest (RF) were applied as classifiers in the study. The performance of each classifier was evaluated independently using the leave-one-subject-out validation method. The best predictive model was based on RF and enabled to identify hypertensive patients by five features with an accuracy of 86.44%. The best five HRV features are sample entropy (SampEn), very low frequency spectral powers (VLF), root mean square of successful differences (RMSSD), ratio of low frequency spectral powers and high frequency spectral powers (LF/HF) and vector angle index (VAI). The results of the study show sympathetic overactivity and decreased parasympathetic tone in hypertensive patients.

Funder

National Natural Science Foundation of China

Fundamental Research Funds for the Central Universities of China

Publisher

Walter de Gruyter GmbH

Subject

Biomedical Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3