A simple model to detect atrial fibrillation via visual imaging

Author:

Corino Valentina D. A.1,Iozzia Luca1,Scarpini Giorgio2,Mainardi Luca T.1,Lombardi Federico2

Affiliation:

1. Department of Electronics, Information and Bioengineering, Politecnico di Milano, Milan, Italy

2. Fondazione IRCCS Ca Granda Ospedale Maggiore Policlinico, U.O.C. di Malattie Cardiovascolari, Università degli Studi di Milano, Dipartimento di Scienze Cliniche e di Comunità, Milan, Italy

Abstract

AbstractAutomatic detection of atrial fibrillation (AF) is a challenging issue. In this study we proposed and validated a model to identify AF by using facial video recordings. We analyzed photoplethysmographic imaging (PPGi) signals, extracted from video of a subject’s face. Sixty-eight patients were included: 30 in sinus rhythm (SR), 25 in AF and 13 presenting with atrial flutter or frequent ectopic beats (ARR). Twenty-six indexes were computed. The dataset was divided in three subsets: the training, validation, and test set, containing, respectively, 58, 29, and 13% of the data. Mean of inter-systolic interval series (M), Local Maxima Similarity (LMS), and pulse harmonic strength (PHS) indexes were significantly different among all groups. Variability and irregularity parameters had the lowest values in SR, the highest in AF, with intermediate values in ARR. The PHS was higher in SR than in ARR, and higher in ARR than in AF. The LMS index was the highest in SR, intermediate in ARR and the lowest in AF. Similarity indexes were higher in SR than in AF and ARR. A model with three features, namely M, Similarity1 and LMS was chosen. With this model, the accuracy for the validation set was 0.947±0.007 for SR, 0.954±0.004 for AF and 0.919±0.006 for ARR; for the test set (never-seen data), accuracy was 0.876±0.021 for SR, 0.870±0.030 for AF and 0.863±0.029 for ARR. A contactless video-based monitoring can be used to detect AF, differentiating it from SR and from frequent ectopies.

Publisher

Walter de Gruyter GmbH

Subject

Biomedical Engineering

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3