A left ventricular phantom for 3D echocardiographic twist measurements

Author:

Hjertaas Johannes Just1,Matre Knut1

Affiliation:

1. Department of Clinical Science, University of Bergen, Haukeland University Hospital, 5021 Bergen, Norway

Abstract

AbstractTraditional two-dimensional (2D) ultrasound speckle tracking echocardiography (STE) studies have shown a wide range of twist values, also for normal hearts, which is due to the limitations of short-axis 2D ultrasound. The same limitations do not apply to three-dimensional (3D) ultrasound, and several studies have shown 3D ultrasound to be superior to 2D ultrasound, which is unreliable for measuring twist. The aim of this study was to develop a left ventricular twisting phantom and to evaluate the accuracy of 3D STE twist measurements using different acquisition methods and volume rates (VR). This phantom was not intended to simulate a heart, but to function as a medium for ultrasound deformation measurement. The phantom was made of polyvinyl alcohol (PVA) and casted using 3D printed molds. Twist was obtained by making the phantom consist of two PVA layers with different elastic properties in a spiral pattern. This gave increased apical rotation with increased stroke volume in a mock circulation. To test the accuracy of 3D STE twist, both single-beat, as well as two, four and six multi-beat acquisitions, were recorded and compared against twist from implanted sonomicrometry crystals. A custom-made software was developed to calculate twist from sonomicrometry. The phantom gave sonomicrometer twist values from 2.0° to 13.8° depending on the stroke volume. STE software tracked the phantom wall well at several combinations of temporal and spatial resolution. Agreement between the two twist methods was best for multi-beat acquisitions in the range of 14.4–30.4 volumes per second (VPS), while poorer for single-beat and higher multi-beat VRs. Smallest offset was obtained at six-beat multi-beat at 17.1 VPS and 30.4 VPS. The phantom proved to be a useful tool for simulating cardiac twist and gave different twist at different stroke volumes. Best agreement with the sonomicrometer reference method was obtained at good spatial resolution (high beam density) and a relatively low VR. 3D STE twist values showed better agreement with sonomicrometry for most multi-beat recordings compared with single-beat recordings.

Publisher

Walter de Gruyter GmbH

Subject

Biomedical Engineering

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3