Algorithms for mapping kidney tissue oxygenation during normothermic machine perfusion using hyperspectral imaging

Author:

Markgraf Wenke1,Feistel Philipp2,Thiele Christine2,Malberg Hagen2

Affiliation:

1. Institute of Biomedical Engineering , Technische Universität Dresden , 01307 Dresden , Germany , Phone: +49 351 463-33392, Fax: +49 351 463-36026

2. Institute of Biomedical Engineering , Technische Universität Dresden , 01307 Dresden , Germany

Abstract

Abstract The lack of donor grafts is a severe problem in transplantation medicine. Hence, the improved preservation of existing and the usage of organs that were deemed untransplantable is as urgent as ever. The development of novel preservation techniques has come into focus. A promising alternative to traditional cold storage is normothermic machine perfusion (NMP), which provides the benefit of improving the organs’ viability and of assessing the organs’ status under physiological conditions. For this purpose, methods for evaluating organ parameters have yet to be developed. In a previous study, we determined the tissue oxygen saturation (StO2) of kidneys during NMP with hyperspectral imaging (HSI) based on a discrete wavelength (DW) algorithm. The aim of the current study was to identify a more accurate algorithm for StO2 calculation. A literature search revealed three candidates to test: a DW algorithm and two full spectral algorithms – area under a curve and partial least square regression (PLSR). After obtaining suitable calibration data to train each algorithm, they were evaluated during NMP. The wavelength range from 590 to 800 nm was found to be appropriate for analyzing StO2 of kidneys during NMP. The PLSR method shows good results in analyzing the tissues’ oxygen status in perfusion experiments.

Publisher

Walter de Gruyter GmbH

Subject

Biomedical Engineering

Reference47 articles.

1. Abouna GM. Organ shortage crisis: problems and possible solutions. Transplant Proc 2008;40:34–8.

2. Branger P, Samuel U. Annual report 2016. Eurotransplant International Foundation 2015; ISBN-EAN: 978-90-71658-35–8.

3. Abouna GM. The use of marginal-suboptimal donor organs: a practical solution for organ shortage. Ann Transplant 2004;9:62–6.

4. Ojo AO, Hanson JA, Meier-Kriesche H, Okechukwu CN, Wolfe RA, Leichtman AB, et al. Survival in recipients of marginal cadaveric donor kidneys compared with other recipients and wait-listed transplant candidates. J Am Soc Nephrol 2001;12:589–97.

5. Port FK, Bragg JL, Metzger RA, Dykstra DM, Gillespie BW, Young EW, et al. Donor characteristics associated with reduced graft survival: an approach to expanding the pool of kidney donors. Transplantation 2002;74:1281–6.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3