Designs and performance of three new microprocessor-controlled knee joints

Author:

Thiele Julius,Schöllig Christina,Bellmann Malte,Kraft Marc

Abstract

Abstract A crossover design study with a small group of subjects was used to evaluate the performance of three microprocessor-controlled exoprosthetic knee joints (MPKs): C-Leg 4, Plié 3 and Rheo Knee 3. Given that the mechanical designs and control algorithms of the joints determine the user outcome, the influence of these inherent differences on the functional characteristics was investigated in this study. The knee joints were evaluated during level-ground walking at different velocities in a motion analysis laboratory. Additionally, technical analyses using patents, technical documentations and X-ray computed tomography (CT) for each knee joint were performed. The technical analyses showed that only C-Leg 4 and Rheo Knee 3 allow microprocessor-controlled adaptation of the joint resistances for different gait velocities. Furthermore, Plié 3 is not able to provide stance extension damping. The biomechanical results showed that only if a knee joint adapts flexion and extension resistances by the microprocessor all known advantages of MPKs can become apparent. But not all users may benefit from the examined functions: e.g. a good accommodation to fast walking speeds or comfortable stance phase flexion. Hence, a detailed comparison of user demands and performance of the designated knee joint is mandatory to ensure a maximum in user outcome.

Publisher

Walter de Gruyter GmbH

Subject

Biomedical Engineering

Reference52 articles.

1. Das Kniegelenk des Menschen als biomechanisches Problem;Biomedizinische Technik,1977

2. Determination of typical patterns from strongly varying signals;Comput Methods Biomech Biomed Engin,2012

3. Kinematic and kinetic comparisons of transfemoral amputee gait using C-Leg and Mauch SNS prosthetic knees;J Rehabil Res Dev,2006

4. Comparative biomechanical analysis of current microprocessor-controlled prosthetic knee joints;Arch Phys Med Rehabil,2010

5. Do microprocessor-controlled knees work better?;J Biomech,2006

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3