High-frequency wall vibrations in a cerebral patient-specific aneurysm model

Author:

Balasso Andrea,Fritzsche Marco,Liepsch Dieter,Prothmann Sascha,Kirschke Jan Stefan,Sindeev Sergey,Frolov Sergey,Friedrich Benjamin

Abstract

Abstract The presence of high-frequency velocity fluctuations in aneurysms have been confirmed by in-vivo measurements and by several numerical simulation studies. Only a few studies have located and recorded wall vibrations in in-vitro experiments using physiological patient models. In this study, we investigated the wall fluctuations produced by a flowing perfusion fluid in a true-to-scale elastic model of a cerebral fusiform aneurysm using a laser Doppler vibrometer (LDV). The model was obtained from patient data. The experimental setup reproduced physiologically relevant conditions using a compliant perfusion system, physiological flow parameters, unsteady flow and a non-Newtonian fluid. Three geometrically identical models with different wall elasticities were used for measurements. The influence of five different flow rates was considered. Wall vibrations were predominantly found at frequencies in the range 40–60 Hz and 255–265 Hz. Their amplitude increased with increasing elasticity of the model, but the spectral peaks remained at about the same frequency. Varying the flow rate produced almost no changes in the frequency domain of the models. The frequency of the spectral peaks varied slightly between points at the lateral wall and at the bottom of the aneurysm. Indeed, embedding the model in a fluid during measurements produced higher and smoother amplitude fluctuations.

Publisher

Walter de Gruyter GmbH

Subject

Biomedical Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3