Degradation of o-, m-, p-cresol isomers using ozone in the presence of V2O5-supported Mn, Fe, and Ni catalysts

Author:

Ncanana Zamani S.1,Vashistha Vinod K.2,Singh Prabal P.2,Pullabhotla Rajasekhar V.S.R.1ORCID

Affiliation:

1. Department of Chemistry , University of Zululand , Private Bag X1001 , Kwa-Dlangezwa 3886 , South Africa

2. Department of Chemistry , GLA University , Mathura , Uttar Pradesh 281406 , India

Abstract

Abstract Oxidative degradation of o-, m- and p-cresols using ozone in the presence of V2O5-supported metal (Mn, Fe, Ni) catalysts was studied under ambient reaction conditions. Metal (Mn, Fe, Ni) loaded V2O5 catalysts were prepared using a wet-impregnation method, thereafter, characterized, and analyzed by use of the XRD, FT-IR, SEM-EDX, TEM, and ICP-OES. Results show the effect of the amount of a metal that was loaded on the support, particularly, how it affects the resultant catalysts’ (i) crystallite size, (ii) dispersion of an active metal over the surface of a support, and (iii) catalytic activity. Mn-loaded catalysts were found to be relatively more active for the conversion of individual cresol isomers and the activity of this catalyst was significantly enhanced at a lower Mn to V2O5 ratio (2.5 wt%). Mn(2.5 %)/V2O5 catalyst led to conversions of 66.78, 71.01 and 73.68 % with o-, m-, and p-cresols respectively within 24 h of oxidation. Oxidation products were derivatized by ethanol and a few were positively detected using GC-MS. o-Tolyl acetate and 2,5-dihydroxy toluene were detected from o-cresol, m-tolyl acetate, and 2,3-dihydroxy toluene from m-cresol and p-tolyl acetate and 3,4-dihydroxy toluene from p-cresol oxidation. Dimethyl maleate and dimethyl oxalate were detected as common products in all three isomers’ oxidation.

Funder

National Research Foundation

University of Zululand

Publisher

Walter de Gruyter GmbH

Subject

General Chemical Engineering,General Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3