Reaction of •OH with CHCl=CH-CHF2 and its atmospheric implication for future environmental-friendly refrigerant

Author:

Holtomo Olivier12,Rhyman Lydia34,Nsangou Mama56,Ramasami Ponnadurai34,Motapon Ousmanou27

Affiliation:

1. Department of Physics , Faculty of Science, University of Bamenda , Bambili P.O. Box 39 , Cameroon

2. Department of Physics , Faculty of Science, University of Maroua , Maroua P.O. Box 814 , Cameroon

3. Department of Chemistry , Computational Chemistry Group, Faculty of Science, University of Mauritius , Réduit 80837 Mauritius

4. Department of Chemical Sciences , Centre for Natural Product Research, University of Johannesburg , Doornfontein , Johannesburg 2028 , South Africa

5. Department of Physics , Higher Teacher's Training College, University of Maroua , Maroua P.O. Box 46 , Cameroon

6. Department of Physics , Faculty of Science, University of Ngaoundéré , Ngaoundéré P.O. Box 454 , Cameroon

7. Laboratory of Fundamental Physics, Faculty of Science, University of Douala , Douala P.O. Box 24157 , Cameroon

Abstract

Abstract In order to understand the atmospheric implication of the chlorinated hydrofluoroolefin (HFO), the geometrical structures and the IR absorption cross sections of the stereoisomers 1-chloro-3,3-difluoropropene were studied using the B3LYP/6-31G(3df) and M06-2X/6-31G(3df) methods in the gas phase. The cis-trans isomerization was assessed using the M06-2X/6-311++G(3df,p)//6-31+G(3df,p) method. The latter method was also employed for thermochemistry and the rate coefficients of the reactions of OH with the cis- and trans-isomers in the temperature ranging from 200 to 400 K. The computational method CCSD/cc-pVTZ//M06-2X/6-31+G(3df,p) was used to benchmark the rate coefficients. It turns out that, the trans-isomer is more stable than cis-isomer and the trans- to cis-isomerization is thermodynamically unfavorable. The rate coefficient follows the Gaussian law with respect to the inverse of temperature. At the global temperature of stratosphere, the calculated rate coefficients served to estimate the atmospheric lifetime along with the photochemical ozone creation potential (POCP). This yielded lifetimes of 4.31 and 7.31 days and POCPs of 3.80 and 2.23 for the cis- and trans-isomer, respectively. The radiative forcing efficiencies gave 0.0082 and 0.0152 W m−2 ppb−1 for the cis- and trans-isomer, respectively. The global warming potential approached zero for both stereoisomers at 20, 100, and 500 years time horizons.

Publisher

Walter de Gruyter GmbH

Subject

General Chemical Engineering,General Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3