Seabed mining and blue growth: exploring the potential of marine mineral deposits as a sustainable source of rare earth elements (MaREEs) (IUPAC Technical Report)

Author:

Sakellariadou Fani1,Gonzalez Francisco J.2,Hein James R.3,Rincón-Tomás Blanca4,Arvanitidis Nikolaos5,Kuhn Thomas6

Affiliation:

1. Department of Maritime Studies , University of Piraeus , Piraeus , Greece

2. Marine Geology Division, Geological Survey of Spain , Madrid , Spain

3. United States Geological Survey, Pacific Coastal and Marine Science Center , Santa Cruz , CA , USA

4. Institute for General Microbiology, Christian-Albrechts-University Kiel , Kiel , Germany

5. Department of Mineral Resources , Geological Survey οf Sweden , Upsala , Sweden

6. Federal Institute for Geosciences and Natural Resources , Hannover , Germany

Abstract

Abstract The expected growth of the global economy and the projected rise in world population call for a greatly increased supply of materials critical for implementing clean technologies, such as rare earth elements (REEs) and other rare metals. Because the demand for critical metals is increasing and land-based mineral deposits are being depleted, seafloor resources are seen as the next frontier for mineral exploration and extraction. Marine mineral deposits with a great resource potential for transition, rare, and critical metals include mainly deep-sea mineral deposits, such as polymetallic sulfides, polymetallic nodules, cobalt-rich crusts, phosphorites, and rare earth element-rich muds. Major areas with economic interest for seabed mineral exploration and mining are the following: nodules in the Penrhyn Basin-Cook Islands Exclusive Economic Zone (EEZ), the Clarion–Clipperton nodule Zone, Peru Basin nodules, and the Central Indian Ocean Basin; seafloor massive sulfide deposits in the exclusive economic zones of Papua New Guinea, Japan, and New Zealand as well as the Mid-Atlantic Ridge and the three Indian Ocean spreading ridges; cobalt-rich crusts in the Pacific Prime Crust Zone and the Canary Islands Seamounts and the Rio Grande Rise in the Atlantic Ocean; and the rare earth element-rich deep-sea muds around Minamitorishima Island in the equatorial North Pacific. In addition, zones for marine phosphorites exploration are located in Chatham Rise, offshore Baja California, and on the shelf off Namibia. Moreover, shallow-water resources, like placer deposits, represent another marine source for many critical minerals, metals, and gems. The main concerns of deep-sea mining are related to its environmental impacts. Ecological impacts of rare earth element mining on deep-sea ecosystems are still poorly evaluated. Furthermore, marine mining may cause conflicts with various stakeholders such as fisheries, communications cable owners, offshore wind farms, and tourism. The global ocean is an immense source of food, energy, raw materials, clean water, and ecosystem services and suffers seriously by multiple stressors from anthropogenic sources. The development of a blue economy strategy needs a better knowledge of the environmental impacts. By protecting vulnerable areas, applying new technologies for deep-sea mineral exploration and mining, marine spatial planning, and a regulatory framework for minerals extraction, we may achieve sustainable management and use of our oceans.

Publisher

Walter de Gruyter GmbH

Subject

General Chemical Engineering,General Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3