Anticipating extreme losses using score-driven shape filters

Author:

Ayala Astrid1,Blazsek Szabolcs1,Escribano Alvaro2

Affiliation:

1. School of Business , Universidad Francisco Marroquín , Ciudad de Guatemala , 01010 , Guatemala

2. Department of Economics , Universidad Carlos III de Madrid , Getafe , 28903 , Spain

Abstract

Abstract We suggest a new value-at-risk (VaR) framework using EGARCH (exponential generalized autoregressive conditional heteroskedasticity) models with score-driven expected return, scale, and shape filters. We use the EGB2 (exponential generalized beta of the second kind), NIG (normal-inverse Gaussian), and Skew-Gen-t (skewed generalized-t) distributions, for which the score-driven shape parameters drive the skewness, tail shape, and peakedness of the distribution. We use daily data on the Standard & Poor’s 500 (S&P 500) index for the period of February 1990 to October 2021. For all distributions, likelihood-ratio (LR) tests indicate that several EGARCH models with dynamic shape are superior to the EGARCH models with constant shape. We compare the realized volatility with the conditional volatility estimates, and we find two Skew-Gen-t specifications with dynamic shape, which are superior to the Skew-Gen-t specification with constant shape. The shape parameter dynamics are associated with important events that affected the stock market in the United States (US). VaR backtesting is performed for the dot.com boom (January 1997 to October 2020), the 2008 US Financial Crisis (October 2007 to March 2009), and the coronavirus disease (COVID-19) pandemic (January 2020 to October 2021). We show that the use of the dynamic shape parameters improves the VaR measurements.

Funder

Universidad Francisco Marroquín

The Spanish Ministry of Economy, Industry and Competitiveness

Consolidation Grant

Maria de Maeztu Grant

Publisher

Walter de Gruyter GmbH

Subject

Economics and Econometrics,Social Sciences (miscellaneous),Analysis,Economics and Econometrics,Social Sciences (miscellaneous),Analysis

Reference47 articles.

1. Andersen, T. G., and T. Bollerslev. 1998. “Answering the Skeptics: Yes, Standard Volatility Models Do Provide Accurate Forecasts.” International Economic Review 39 (4): 885–905. https://doi.org/10.2307/2527343.

2. Ayala, A., S. Blazsek, and A. Escribano. 2019. “Maximum Likelihood Estimation of Score-Driven Models with Dynamic Shape Parameters: An Application to Monte Carlo Value-At-Risk.” In Working Paper, 19–2: University Carlos III of Madrid, Department of Economics. Also available at https://e-archivo.uc3m.es/handle/10016/28638.

3. Backus, D., M. Chernov, and I. Martin. 2011. “Disasters Implied by Equity Index Options.” Journal of Finance 66 (6): 1969–2012. https://doi.org/10.1111/j.1540-6261.2011.01697.x.

4. Bakshi, G., N. Kapadia, and D. Madan. 2003. “Stock Return Characteristics, Skew Laws, and the Differential Pricing of Individual Equity Options.” The Review of Financial Studies 16 (1): 101–43. https://doi.org/10.1093/rfs/16.1.0101.

5. Basel Committee. 1996. “Supervisory Framework for the Use of “Backtesting” in Conjunction with the Internal Models Approach to Market Risk Capital Requirements.” Also Available at www.bis.org.

Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3