Affiliation:
1. Institut für Organische Chemie der Technischen Universität Berlin, Straße des 17. Juni 135, D-1000 Berlin 12
Abstract
Abstract
Extensive quantum mechanical calculations on the unrestricted MINDO/3 level reveal that for some ionised carbonic acids the energetically most feasible pathway for uni-molecular C-C cleavage cannot be described as being a one-step process. In complete agreement with experimental results the computational data are consistent with an inter-pretation of the reaction as being a two-step process, in which the reaction commences with a hydrogen migration from a CH-bond onto the ionised C = 0 group. The dissociation is completed with a radical induced C-C cleavage thus generating quite stable protonated unsaturated carbonic acids. Whereas the MINDO/3 results clearly show that the two-step process is energetically favoured over the direct C-C cleavage, this computational method fails badly in explaining the experimentally established fact that in the two-step sequence the hydrogen migration is the rate-determining step. This failure is due to the MINDO/3 inherent weakness of overestimating the stability of cyclic ions, e.g. cyclic transition states as they are formed in the course of the hydrogen migration step. Single point ab initio calculations carried out on the 4-31G level substantiate this interpretation in that the transition state for the hydrogen migration is calculated to lie substantially higher than that for the actual C-C dissociation step, but is still much lower than that calculated for a direct simple bond cleavage process of the respective cation radical.
Cited by
10 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献