Dependency of Military Capabilities on Technological Development

Author:

Kuikka Vesa1,Nikkarila Juha-Pekka2,Suojanen Marko3

Affiliation:

1. PhLic, Finnish Defence Research Agency, Finland

2. PhD, Finnish Defence Research Agency, Finland

3. M.Sc.(EE), Finnish Defence Research Agency, Finland

Abstract

Abstract Our goal is to get better understanding of different kind of dependencies behind the high-level capability areas. The models are suitable for investigating present state capabilities or future developments of capabilities in the context of technology forecasting. Three levels are necessary for a model describing effects of technologies on military capabilities. These levels are capability areas, systems and technologies. The contribution of this paper is to present one possible model for interdependencies between technologies. Modelling interdependencies between technologies is the last building block in constructing a quantitative model for technological forecasting including necessary levels of abstraction. This study supplements our previous research and as a result we present a model for the whole process of capability modelling. As in our earlier studies, capability is defined as the probability of a successful task or operation or proper functioning of a system. In order to obtain numerical data to demonstrate our model, we conducted a questionnaire to a group of defence technology researchers where interdependencies between seven representative technologies were inquired. Because of a small number of participants in questionnaires and general uncertainties concerning subjective evaluations, only rough conclusions can be made from the numerical results.

Publisher

Walter de Gruyter GmbH

Reference36 articles.

1. Gediminas Adomavicius, Jesse C. Bockstedt, Alok Gupta, Robert J. Kauffman (2005). Technology roles and paths of influence in an ecosystem model of technology evolution, Information Technology and Management, Vol. 8, Issue 2, 185-202.

2. Muhammad Amer, Tugrul U. Daim, Antonie Jetter (2013). A review of scenario planning, Futures 46, 23-40.

3. Patrick T. Biltgen, Dimitri N. Mavris (2007). Capability-based quantitative technology evaluation for systems-of-systems, IEEE System of Systems Engineering Conference.

4. Anelí Bongers, José L. Torres (2014). Measuring technological trends: A comparison between U.S. and U.S.S.R./Russian jet fighter aircraft, Technological Forecasting & Social Change, Vol. 87, 125-134.

5. Robert F. Bordley, Stephen M. Pollock (2009). A decision-analytic approach to reliability-based design optimization, Operations Research 57, 1262-1270.

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3