Empirical wavelet transform-based delineator for arterial blood pressure waveforms

Author:

Singh Omkar,Sunkaria Ramesh Kumar

Abstract

AbstractArterial blood pressure (ABP) waveforms provide plenty of pathophysiological information about the cardiovascular system. ABP pulse analysis is a routine process used to investigate the health status of the cardiovascular system. ABP pulses correspond to the contraction and relaxation phenomena of the human heart. The contracting or pumping phase of the cardiac chamber corresponds to systolic pressure, whereas the resting or filling phase of the cardiac chamber corresponds to diastolic pressure. An ABP waveform commonly comprises systolic peak, diastolic onset, dicrotic notch, and dicrotic peak. Automatic ABP delineation is extremely important for various biomedical applications. In this paper, a delineator for onset and systolic peak detection in ABP signals is presented. The algorithm uses a recently developed empirical wavelet transform (EWT) for the delineation of arterial blood pulses. EWT is a new mathematical tool used to decompose a given signal into different modes and is based on the design of an adaptive wavelet filter bank. The performance of the proposed delineator is evaluated and validated over ABP waveforms of standard databases, such as the MIT-BIH Polysomnoghaphic Database, Fantasia Database, and Multiparameter Intelligent Monitoring in Intensive Care Database. In terms of pulse onset detection, the proposed delineator achieved an average error rate of 0.11%, sensitivity of 99.95%, and positive predictivity of 99.92%. In a similar manner for systolic peak detection, the proposed delineator achieved an average error rate of 0.10%, sensitivity of 99.96%, and positive predictivity of 99.92%.

Publisher

Walter de Gruyter GmbH

Subject

Health Informatics,Biochemistry, Genetics and Molecular Biology (miscellaneous),Medicine (miscellaneous),General Computer Science

Reference32 articles.

1. Assessment of arterial distensibility by automatic pulse wave velocity measurement;Hypertension,1996

2. Empirical wavelet transform;IEEE Trans Signal Process,2013

3. Automatic detection algorithm of intracranial pressure waveform components In of rd International Conference on IEEE in and Biology;Aboy;Proceedings Engineering Medicine Society,2001

4. Development of a mobile pulse waveform analyzer for cardiovascular health monitoring;Comput Biol Med,2008

5. An innovative dicrotic notch detection algorithm which combines rule-based logic with digital signal processing techniques;Comput Biomed Res,1995

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3