An intelligible deep convolution neural network based approach for classification of diabetic retinopathy

Author:

Sharma Sunil,Maheshwari Saumil,Shukla Anupam

Abstract

Abstract Deep convolution neural networks (CNNs) have demonstrated their capabilities in modern-day medical image classification and analysis. The vital edge of deep CNN over other techniques is their ability to train without expert knowledge. Time bound detection is very beneficial for the early cure of disease. In this paper, a deep CNN architecture is proposed to classify nondiabetic retinopathy and diabetic retinopathy fundus eye images. Kaggle 2015 diabetic retinopathy competition dataset and messier experiment dataset are used in this study. The proposed deep CNN algorithm produces significant results with 93% area under the curve (AUC) for the Kaggle dataset and 91% AUC for the Messidor dataset. The sensitivity and specificity for the Kaggle dataset are 90.22% and 85.13%, respectively; the corresponding values of the Messidor dataset are 91.07% and 80.23%, respectively. The results outperformed many existing studies. The present architecture is a promising tool for diabetic retinopathy image classification.

Publisher

Walter de Gruyter GmbH

Subject

Health Informatics,Biochemistry, Genetics and Molecular Biology (miscellaneous),Medicine (miscellaneous),General Computer Science

Reference30 articles.

1. Improvement of the application of diabetic retinopathy detection model;Wireless Pers Commun,2018

2. Detection of exudates in fundus photographs using deep neural networks and anatomical landmark detection fusion;Comput Methods Programs Biomed,2017

3. Detection of exudates in fundus photographs using deep neural networks and anatomical landmark detection fusion;Comput Methods Programs Biomed,2017

4. Photocoagulation treatment of proliferative diabetic retinopathy: the second report of diabetic retinopathy study findings;Ophthalmology,1978

Cited by 17 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3