Hydrophobic core structure of macromomycin – the apoprotein of the antitumor antibiotic auromomycin – fuzzy oil drop model applied

Author:

Roterman-Konieczna Irena,Banach Mateusz,Konieczny Leszek

Abstract

AbstractThe fuzzy oil drop model was applied to analyze the structure of macromomycin, the apoprotein of the antitumor antibiotic auromomycin, revealing the differentiation of β-structural fragments present in β-sandwich. The seven-stranded antiparallel β-barrel and two antiparallel β-sheet ribbons represent the highly ordered geometry of the structure. However, participation in hydrophobic core formation appears different. The structure of the complete domain represents the status of the irregular hydrophobic core; however, some β-structural fragments appear to represent the hydrophobicity density distribution accordant with the idealized distribution of hydrophobicity as expected using the fuzzy oil drop model. Four β-structural fragments generating one common layer appear to be unstable in respect to the general structure of the hydrophobic core. This area is expected to be more flexible than other parts of the molecule. The protein binds the ligand – chromophore, two 2-methyl-2,4-pentanediol – in a well-defined cleft. The presence of this cleft makes the general structure of the hydrophobic core irregular (as it may be interpreted using the fuzzy oil drop model). Two short loops generated by two SS bonds fit very well to the general distribution of hydrophobicity density as expected for the model. No information about the potential amyloidogenic character of this protein is given in the literature; however, the specificity of the hydrophobicity distribution profile is found to be highly similar to the one observed in transthyretin (Banach M, Konieczny L, Roterman I. The fuzzy oil drop model, based on hydrophobicity density distribution, generalizes the influence of water environment on protein structure and function. J Theor Biol 2014;359:6–17), suggesting a possible tendency to turn to the amyloid form. A detailed analysis of macromomycin will be given, and a comparable analysis with other proteins of β-sandwich or β-barrel will be presented.

Publisher

Walter de Gruyter GmbH

Subject

Health Informatics,Biochemistry, Genetics and Molecular Biology (miscellaneous),Medicine (miscellaneous),General Computer Science

Reference34 articles.

1. Divergence entropy to characterise the structure of hydrophobic core in proteins;Kalinowska;Entropy,1477

2. editor Protein folding in silico : protein folding versus protein structure prediction Publishing currently;Roterman,2012

3. Can the structure of hydrophobic core determine the complexation site In editor Identification of ligand binding site and protein - protein interaction area Dordrecht;Banach,2013

4. Intrinsically disordered proteins - relation to general model expressing the active role of the water environment Protein;Kalinowska;Adv Chem Biol,2014

5. Ligand binding site recognition In editor Protein folding in silico Oxford Publishing;Banach,2012

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3