Independent component analysis of EEG data for EGI system

Author:

Gajos Anna,Wójcik Grzegorz M.

Abstract

AbstractComponent analysis is one of the most important methods used for electroencephalographic (EEG) signal decomposition, and the so-called independent component analysis (ICA) is commonly used. The main function of the ICA algorithm is to find a linear representation of non-Gaussian data whose elements are statistically independent or at least as independent as possible. There are many commercial solutions for EEG signal acquisition. Usually, together with the EEG, one gets a dedicated software to handle the signal. However, quite often, the software does not provide researchers with all necessary functions. A high-performance, dense-array EGI-EEG system is distributed with the NetStation software. Although NetStation is a powerful tool, it does not have any implementation of the ICA algorithm. This causes many problems for researchers who want to export raw data from the amplifier and then work on it using some other tools such as EEGLAB for MATLAB, as these data are not fully compatible with the EGI format. We will present the C++ implementation of ICA that can handle filtered data from the EGI with better affordability. Our tool offers visualization of raw signal and ICA algorithm results and will be distributed under Freeware license.

Publisher

Walter de Gruyter GmbH

Subject

Health Informatics,Biochemistry, Genetics and Molecular Biology (miscellaneous),Medicine (miscellaneous),General Computer Science

Reference30 articles.

1. Implementation of fractional calculus-based methods for the purpose of analysis of EEG signals. International Conference on Cybernetic Modeling of Biological Systems (MCSB) 2015;Bio-Algorithms Med-Syst,2015

2. Fast and robust fixed-point algorithms for independent component analysis;IEEE Trans Neural Netw,1999

3. Integrated IT environment for people with disabilities: a new concept;Cent Eur J Med,2014

4. Electroencephalographic detection of synesthesia;Ann Univ Mariae Curie Sklodowska Sect Inf,2014

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3