Affiliation:
1. Department of Mathematics , Anna University , Chennai , , INDIA
Abstract
ABSTRACT
We compute the rational zero-divisor cup-length of the oriented partial flag manifold
F
˜
(
n
1
,
…
,
n
k
)
\[\widetilde{F}\left( {{n}_{1}},\ldots,{{n}_{k}} \right)\]
of type (n
1,…, nk
), k ≥ 2. For certain classes of oriented partial flag manifolds, we compare the rational zero-divisor cup-length and the
ℤ
2
\[{{\mathbb{Z}}_{2}}\]
-zero-divisor cup-length.
Reference18 articles.
1. Borel, A.: Sur la cohomologie des espaces fibrs principaux et des espaces homognes de groupes de Lie compacts, Ann. Math. 57(2) (1953), 115–207.
2. Borel, A.: Kählerian coset spaces of semi-simple Lie groups, Proc. Nat. Acad. Sci. U.S.A. 40(12) (1954), 1147–1151.
3. Bruner, R. R.—Catanzaro, M.—May J. P.: Characteristic Cclasses, lecture notes available at http: //www.math.uchicago.edu/may/CHAR/charclasses.pdf.
4. Cohen, D.—Suciu, A.: Boundary manifolds of projective hypersurfaces, Adv. Math. 206 (2006), 538–566.
5. Davis, D.: On the zero-divisor-cup-length of planar polygon spaces modulo oriented isometry, Topology Appl. 207 (2016), 43–53.