Affiliation:
1. Institute for Mathematics , University of Rostock , 18057 Rostock , Germany
Abstract
Abstract
Let
𝒫
{\mathcal{P}}
be an n-dimensional convex polytope and let
𝒮
{\mathcal{S}}
be a hypersurface in
ℝ
n
{\mathbb{R}^{n}}
. This paper investigates potentials to reconstruct
𝒫
{\mathcal{P}}
, or at least to compute significant properties of
𝒫
{\mathcal{P}}
, if the modulus of the Fourier transform of
𝒫
{\mathcal{P}}
on
𝒮
{\mathcal{S}}
with wave length λ, i.e.,
|
∫
𝒫
e
-
i
1
λ
𝐬
⋅
𝐱
𝐝𝐱
|
for
𝐬
∈
𝒮
,
\biggl{\lvert}\int_{\mathcal{P}}e^{-i\frac{1}{\lambda}\mathbf{s}\cdot\mathbf{x%
}}\,\mathbf{dx}\biggr{\rvert}\quad\text{for }\mathbf{s}\in\mathcal{S},
is given, λ is sufficiently small and
𝒫
{\mathcal{P}}
and
𝒮
{\mathcal{S}}
have some well-defined properties. The main tool is an asymptotic formula for the Fourier transform of
𝒫
{\mathcal{P}}
with wave length λ when
λ
→
0
{\lambda\rightarrow 0}
. The theory of X-ray scattering of nanoparticles motivates this study, since the modulus of the Fourier transform of the reflected beam wave vectors is approximately measurable on a half sphere in experiments.
Reference24 articles.
1. A. D. Alexandrov,
Convex Polyhedra,
Springer Monogr. Math.,
Springer, Berlin, 2005.
2. V. Alexandrov, N. Kopteva and S. S. Kutateladze,
Blaschke addition and convex polyhedra,
preprint (2005), https://arxiv.org/abs/math/0502345.
3. I. Barke, H. Hartmann, D. Rupp, L. Flückiger, M. Sauppe, M. Adolph, S. Schorb, C. Bostedt, R. Treusch, C. Peltz, S. Bartling, T. Fennel, K.-H. Meiwes-Broer and T. Möller,
The 3D-architecture of individual free silver nanoparticles captured by X-ray scattering,
Nature Commun. 6 (2015), no. 1, 1–7.
4. A. Barvinok,
Integer Points in Polyhedra,
European Mathematical Society, Zürich, 2008.
5. M. Beck and S. Robins,
Computing the Continuous Discretely,
Springer, Berlin, 2009.