Reconstruction of polytopes from the modulus of the Fourier transform with small wave length

Author:

Engel Konrad1,Laasch Bastian1ORCID

Affiliation:

1. Institute for Mathematics , University of Rostock , 18057 Rostock , Germany

Abstract

Abstract Let 𝒫 {\mathcal{P}} be an n-dimensional convex polytope and let 𝒮 {\mathcal{S}} be a hypersurface in n {\mathbb{R}^{n}} . This paper investigates potentials to reconstruct 𝒫 {\mathcal{P}} , or at least to compute significant properties of 𝒫 {\mathcal{P}} , if the modulus of the Fourier transform of 𝒫 {\mathcal{P}} on 𝒮 {\mathcal{S}} with wave length λ, i.e., | 𝒫 e - i 1 λ 𝐬 𝐱 𝐝𝐱 | for  𝐬 𝒮 , \biggl{\lvert}\int_{\mathcal{P}}e^{-i\frac{1}{\lambda}\mathbf{s}\cdot\mathbf{x% }}\,\mathbf{dx}\biggr{\rvert}\quad\text{for }\mathbf{s}\in\mathcal{S}, is given, λ is sufficiently small and 𝒫 {\mathcal{P}} and 𝒮 {\mathcal{S}} have some well-defined properties. The main tool is an asymptotic formula for the Fourier transform of 𝒫 {\mathcal{P}} with wave length λ when λ 0 {\lambda\rightarrow 0} . The theory of X-ray scattering of nanoparticles motivates this study, since the modulus of the Fourier transform of the reflected beam wave vectors is approximately measurable on a half sphere in experiments.

Publisher

Walter de Gruyter GmbH

Subject

Applied Mathematics

Reference24 articles.

1. A. D. Alexandrov, Convex Polyhedra, Springer Monogr. Math., Springer, Berlin, 2005.

2. V. Alexandrov, N. Kopteva and S. S. Kutateladze, Blaschke addition and convex polyhedra, preprint (2005), https://arxiv.org/abs/math/0502345.

3. I. Barke, H. Hartmann, D. Rupp, L. Flückiger, M. Sauppe, M. Adolph, S. Schorb, C. Bostedt, R. Treusch, C. Peltz, S. Bartling, T. Fennel, K.-H. Meiwes-Broer and T. Möller, The 3D-architecture of individual free silver nanoparticles captured by X-ray scattering, Nature Commun. 6 (2015), no. 1, 1–7.

4. A. Barvinok, Integer Points in Polyhedra, European Mathematical Society, Zürich, 2008.

5. M. Beck and S. Robins, Computing the Continuous Discretely, Springer, Berlin, 2009.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3