Simplified REGINN-IT method in Banach spaces for nonlinear ill-posed operator equations

Author:

Mahale Pallavi1,Shaikh Farheen M.1

Affiliation:

1. Department of Mathematics , Visvesvaraya National Institute of Technology Nagpur , Maharashtra - 440010 , India

Abstract

Abstract In 2021, Z. Fu, Y. Chen and B. Han introduced an inexact Newton regularization (REGINN-IT) using an idea involving the non-stationary iterated Tikhonov regularization scheme for solving nonlinear ill-posed operator equations. In this paper, we suggest a simplified version of the REGINN-IT scheme by using the Bregman distance, duality mapping and a suitable parameter choice strategy to produce an approximate solution. The method is comprised of inner and outer iteration steps. The outer iterates are stopped by a Morozov-type stopping rule, while the inner iterate is executed by making use of the non-stationary iterated Tikhonov scheme. We have studied convergence of the proposed method under some standard assumptions and utilizing tools from convex analysis. The novelty of the method is that it requires computation of the Fréchet derivative only at an initial guess of an exact solution and hence can be identified as more efficient compared to the method given by Z. Fu, Y. Chen and B. Han. Further, in the last section of the paper, we discuss test examples to inspect the proficiency of the method.

Funder

Science and Engineering Research Board

Publisher

Walter de Gruyter GmbH

Subject

Applied Mathematics

Reference42 articles.

1. A. B. Bakushinsky and M. Y. Kokurin, Iterative Methods for Approximate Solution of Inverse Problems, Math. Appl. (New York) 577, Springer, Dordrecht, 2004.

2. I. Cioranescu, Geometry of Banach Spaces, Duality Mappings and Nonlinear Problems, Math. Appl. 62, Kluwer Academic, Dordrecht, 1990.

3. D. Colton and R. Kress, Inverse Acoustic and Electromagnetic Scattering Theory, 2nd ed., Appl. Math. Sci. 93, Springer, Berlin, 1988.

4. H. W. Engl, M. Hanke and A. Neubauer, Regularization of Inverse Problems, Math. Appl. 375, Kluwer Academic, Dordrecht, 1986.

5. H. W. Engl, A. K. Louis and W. Rundell, Inverse Problems in Geophysical Applications. Society for Industrial and Applied Mathematics, Philadelphia, 1997.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3