Fast iterative regularization by reusing data

Author:

Vega Cristian1ORCID,Molinari Cesare1ORCID,Rosasco Lorenzo2ORCID,Villa Silvia1ORCID

Affiliation:

1. MaLGa Center , DIMA – Dipartimento di eccellenza 2023-27 , Università di Genova , Via Dodecaneso 35, Genoa , Italy

2. CBMM , Massachusets Institute of Technology , Cambridge , MA, USA ; and Istituto Italiano di Tecnologia, Genoa, Italy

Abstract

Abstract Discrete inverse problems correspond to solving a system of equations in a stable way with respect to noise in the data. A typical approach to select a meaningful solution is to introduce a regularizer. While for most applications the regularizer is convex, in many cases it is neither smooth nor strongly convex. In this paper, we propose and study two new iterative regularization methods, based on a primal-dual algorithm, to regularize inverse problems efficiently. Our analysis, in the noise free case, provides convergence rates for the Lagrangian and the feasibility gap. In the noisy case, it provides stability bounds and early stopping rules with theoretical guarantees. The main novelty of our work is the exploitation of some a priori knowledge about the solution set: we show that the linear equations determined by the data can be used more than once along the iterations. We discuss various approaches to reuse linear equations that are at the same time consistent with our assumptions and flexible in the implementation. Finally, we illustrate our theoretical findings with numerical simulations for robust sparse recovery and image reconstruction. We confirm the efficiency of the proposed regularization approaches, comparing the results with state-of-the-art methods.

Funder

H2020 Marie Skłodowska-Curie Actions

European Research Council

European Office of Aerospace Research and Development

National Science Foundation

Università degli Studi di Genova

Publisher

Walter de Gruyter GmbH

Subject

Applied Mathematics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3