Accelerating regional weather forecasting by super-resolution and data-driven methods

Author:

Mikhaylov Artem1ORCID,Meshchaninov Fedor1,Ivanov Vasily1,Labutin Igor1,Stulov Nikolai1,Burnaev Evgeny2ORCID,Vanovskiy Vladimir1ORCID

Affiliation:

1. 366033 Skolkovo Institute of Science and Technology , 121205 Moscow , Russia

2. 366033 Skolkovo Institute of Science and Technology , 121205; and Autonomous Non-Profit Organization Artificial Intelligence Research Institute (AIRI), 105064 Moscow , Russia

Abstract

Abstract At present, computationally intensive numerical weather prediction systems based on physics equations are widely used for short-term weather forecasting. In this paper, we investigate the potential of accelerating the Weather Research and Forecasting (WRF-ARW) model using machine learning techniques. Two main approaches are considered. First, we assess the viability of complete replacing the numerical weather model with deep learning models, capable of predicting the full range forecast directly from basic initial data. Second, we consider a “super-resolution” technique involving low-resolution WRF computation and a machine learning based downscaling using coarse-grid forecast for conditioning. The process of downscaling is intrinsically an ill-posed problem. In both categories, several prominent and promising machine learning methods are evaluated and compared on real data from a variety of sources. for the Moscow region Namely, in addition to the ground truth WRF forecasts that were utilized for training, we compare the model predictions against ERA5 reanalysis and measurements from local weather stations. We show that deep learning approaches can be successfully applied to accelerate a numerical model and even produce more realistic forecasts in other aspects. As a practical outcome, this study offers empirically validated guidance for the selection and application of deep learning methods to accelerate the computation of detailed short-term atmospheric forecasts tailored to specific needs.

Funder

Russian Science Foundation

Publisher

Walter de Gruyter GmbH

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3