A comparative study of variational autoencoders, normalizing flows, and score-based diffusion models for electrical impedance tomography

Author:

Wang Huihui1,Xu Guixian1,Zhou Qingping1

Affiliation:

1. School of Mathematics and Statistics , Central South University , Changsha , P. R. China

Abstract

Abstract Electrical Impedance Tomography (EIT) is a widely employed imaging technique in industrial inspection, geophysical prospecting, and medical imaging. However, the inherent nonlinearity and ill-posedness of EIT image reconstruction present challenges for classical regularization techniques, such as the critical selection of regularization terms and the lack of prior knowledge. Deep generative models (DGMs) have been shown to play a crucial role in learning implicit regularizers and prior knowledge. This study aims to investigate the potential of three DGMs – variational autoencoder networks, normalizing flow, and score-based diffusion model – to learn implicit regularizers in learning-based EIT imaging. We first introduce background information on EIT imaging and its inverse problem formulation. Next, we propose three algorithms for performing EIT inverse problems based on corresponding DGMs. Finally, we present numerical and visual experiments, which reveal that (1) no single method consistently outperforms the others across all settings, and (2) when reconstructing an object with two anomalies using a well-trained model based on a training dataset containing four anomalies, the conditional normalizing flow (CNF) model exhibits the best generalization in low-level noise, while the conditional score-based diffusion model (CSD*) demonstrates the best generalization in high-level noise settings. We hope our preliminary efforts will encourage other researchers to assess their DGMs in EIT and other nonlinear inverse problems.

Funder

National Natural Science Foundation of China

Natural Science Foundation of Hunan Province

Publisher

Walter de Gruyter GmbH

Reference35 articles.

1. A. Adler and D. Holder, Electrical Impedance Tomography: Methods, History and Applications, 2nd ed, CRC Press, Boca Raton, 2021.

2. L. Ardizzone, C. Lüth, J. Kruse, C. Rother and U. Köthe, Guided image generation with conditional invertible neural networks, preprint (2019), https://arxiv.org/abs/1907.02392.

3. P. Bohra, T.-A. Pham, J. Dong and M. Unser, Bayesian inversion for nonlinear imaging models using deep generative priors, IEEE Trans. Comput. Imaging. 8 (2022), 1237–1249.

4. H. Chung, J. Huh, G. Kim, Y. K. Park and J. C. Ye, Missing cone artifact removal in odt using unsupervised deep learning in the projection domain, IEEE Trans. Comput. Imaging 7 (2021), 747–758.

5. H. Chung, J. Kim, M. T. Mccann, M. L. Klasky and J. C. Ye, Diffusion posterior sampling for general noisy inverse problems, The Eleventh International Conference on Learning Representations, (2023), https://openreview.net/forum?id=OnD9zGAGT0k.

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3