Why fractional derivatives with nonsingular kernels should not be used

Author:

Diethelm Kai12,Garrappa Roberto34,Giusti Andrea5,Stynes Martin6

Affiliation:

1. Fakultät Angewandte Natur- und Geisteswissenschaften , University of Applied Sciences Würzburg-Schweinfurt , Ignaz-Schön-Str. 11, 97421 , Schweinfurt , Germany

2. GNS mbH Gesellschaft für numerische , Simulation mbH Am Gaußberg 2, 38114 , Braunschweig , Germany

3. Department of Mathematics , University of Bari , Via E. Orabona 4, 70126 , Bari , Italy

4. The INdAM Research group GNCS , Trieste , Italy

5. Department of Physics & Astronomy Bishop’s , University , 2600 College Street QC J1M 1Z7 , Sherbrooke , Canada

6. Applied and Computational Mathematics Division Beijing Computational Science Research Center , Beijing , 100193 , China

Abstract

Abstract In recent years, many papers discuss the theory and applications of new fractional-order derivatives that are constructed by replacing the singular kernel of the Caputo or Riemann-Liouville derivative by a non-singular (i.e., bounded) kernel. It will be shown here, through rigorous mathematical reasoning, that these non-singular kernel derivatives suffer from several drawbacks which should forbid their use. They fail to satisfy the fundamental theorem of fractional calculus since they do not admit the existence of a corresponding convolution integral of which the derivative is the left-inverse; and the value of the derivative at the initial time t = 0 is always zero, which imposes an unnatural restriction on the differential equations and models where these derivatives can be used. For the particular cases of the so-called Caputo-Fabrizio and Atangana-Baleanu derivatives, it is shown that when this restriction holds the derivative can be simply expressed in terms of integer derivatives and standard Caputo fractional derivatives, thus demonstrating that these derivatives contain nothing new.

Publisher

Walter de Gruyter GmbH

Subject

Applied Mathematics,Analysis

Reference31 articles.

1. K. Diethelm, The Analysis of Fractional Differential Equations, Volume 2004 of Lecture Notes in Mathematics. Springer-Verlag, Berlin (2010).

2. G. Doetsch, Introduction to the Theory and Application of the Laplace Transformation. Springer-Verlag, New York-Heidelberg (1974).

3. M. D’Ovidio, F. Polito, Fractional diffusion–telegraph equations and their associated stochastic solutions. Theory Probab. Appl. 62, No 4 (2018), 552–574 [appeared as an arXiv Preprint, arXiv:1307.1696, in 2013].

4. R. Garrappa, E. Kaslik, M. Popolizio, Evaluation of fractional integrals and derivatives of elementary functions: Overview and tutorial. Mathematics7, No 5 (2019), # 407; 10.3390/math7050407.

5. A. Giusti, A comment on some new definitions of fractional derivative. Nonlinear Dyn. 93 (2018), 1757–1763; 10.1007/s11071-018-4289-8.

Cited by 87 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3