“Fuzzy” calculus: The link between quantum mechanics and discrete fractional operators

Author:

Nigmatullin Raoul R.1,Lino Paolo2,Maione Guido2

Affiliation:

1. Radioelectronic and Informative Measurements Techniques Dept . Kazan National Research Technical University (KNRTU-KAI) named by A.N. Tupolev , 31/7 Karl Marx str., 420111 Kazan , Tatarstan , Russian Federation

2. Dept. of Electrical and Information Engineering , Polytechnic University of Bari , via E. Orabona 4, 70125 , Bari , Italy

Abstract

Abstract In this paper, based on the “fuzzy” calculus covering the continuous range of operations between two couples of arithmetic operations (+, –) and (×, :), a new form of the fractional integral is proposed occupying an intermediate position between the integral and derivative of the first order. This new form of the fractional integral satisfies the C1 criterion according to the Ross classification. The new calculus is tightly related to the continuous values of the continuous spin S = 1 and can generalize the expression for the fractional values of the shifting discrete index. This calculus can be interpreted as the appearance of the hidden states corresponding to unobservable values of S = 1. Many well-known formulas can be generalized and receive a new extended interpretation. In particular, one can factorize any rectangle matrix and receive the “perfect” filtering formula that allows transforming any (deterministic or random) function to another arbitrary function and vice versa. This transformation can find unexpected applications in data transmission, cryptography and calibration of different gadgets and devices. One can also receive the hybrid (”centaur”) formula for the Fourier (F-) transformation unifying both expressions for the direct and inverse F-transformations in one mathematical unit. The generalized Dirichlet formula, which is obtained in the frame of the new calculus to allow selecting the desired resonance frequencies, will be useful in discrete signals processing, too. The basic formulas are tested numerically on mimic data.

Publisher

Walter de Gruyter GmbH

Subject

Applied Mathematics,Analysis

Reference26 articles.

1. R. Bellman, Introduction to Matrix Analysis. McGraw-Hill Book Co., Inc., New York-Toronto-London (1960).

2. W. Chen, Time-space fabric underlying anomalous diffusion. Chaos Solitons Fractals28 (2006), 923–929.

3. F.R. Gantmacher, The Theory of Matrices. Chelsea Publishing Co., Providence (1960).

4. A.K. Golmankhaneh, D. Baleanu, On a new measure on fractals. J. Inequal. Appl. 522 (2013), 1–9.

5. J. Hadamard, Essai sur l’étude des fonctions, données par leur développement de Taylor. J. Pure Appl. Math. 4 (1892), 101–186.

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3