A practical guide to Prabhakar fractional calculus

Author:

Giusti Andrea1,Colombaro Ivano2,Garra Roberto3,Garrappa Roberto45,Polito Federico6,Popolizio Marina75,Mainardi Francesco8

Affiliation:

1. Department of Physics & Astronomy , Bishop’s University , 2600 College Street QC J1M 1Z7 , Sherbrooke , Canada

2. Department of Information and Communication Technologies , Universitat Pompeu Fabra , C/Roc Boronat 138 , Barcelona , Spain

3. Department of Statistical Sciences , Sapienza University of Rome , Piazzale Aldo Moro 5, 00185 , Roma , Italy

4. Department of Mathematics , University of Bari , Via E. Orabona 4, 70126 , Bari , Italy

5. INdAM Research group GNCS , Rome , Italy

6. Department of Mathematics , University of Torino , Via Carlo Alberto 10, 10123 , Torino , Italy

7. Department of Electrical and Information Engineering , Polytechnic University of Bari , Via E. Orabona 4, 70126 , Bari , Italy

8. Department of Physics and Astronomy , University of Bologna , Via Irnerio 46, 40126 , Bologna , Italy

Abstract

Abstract The Mittag–Leffler function is universally acclaimed as the Queen function of fractional calculus. The aim of this work is to survey the key results and applications emerging from the three-parameter generalization of this function, known as the Prabhakar function. Specifically, after reviewing key historical events that led to the discovery and modern development of this peculiar function, we discuss how the latter allows one to introduce an enhanced scheme for fractional calculus. Then, we summarize the progress in the application of this new general framework to physics and renewal processes. We also provide a collection of results on the numerical evaluation of the Prabhakar function.

Publisher

Walter de Gruyter GmbH

Subject

Applied Mathematics,Analysis

Reference159 articles.

1. N. Balakrishnan, T. J. Kozubowski, A class of weighted Poisson processes. Stat. Probabil. Lett. 78, No 15 (2008), 2346–2352.

2. J. H. Barrett, Differential equations of non-integer order. Canadian J. Math. 6 (1954), 529–541.

3. L. Beghin, C. Macci, Large deviations for fractional Poisson processes. Stat. Probabil. Lett. 83, No 4 (2012), 1193–1202.

4. L. Beghin, E. Orsingher, Fractional Poisson processes and related planar random motions. Electron. J. Probab. 14, No 61 (2009), 1790–1826.

5. L. Beghin, E. Orsingher, Poisson-type processes governed by fractional and higher-order recursive differential equations. Electron. J. Probab. 15, No 22 (2010), 684–709.

Cited by 112 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3