Generalized fractional Poisson process and related stochastic dynamics

Author:

Michelitsch Thomas M.1,Riascos Alejandro P.2

Affiliation:

1. Sorbonne Université , Institut Jean le Rond ďAlembert , CNRS UMR 7190 4 place Jussieu, 75252 , Paris , cedex 05 , France

2. Instituto de Física , Universidad Nacional Autónoma de México , Apartado Postal 20-364, 01000 , Ciudad de México , México

Abstract

Abstract We survey the ‘generalized fractional Poisson process’ (GFPP). The GFPP is a renewal process generalizing Laskin’s fractional Poisson counting process and was first introduced by Cahoy and Polito. The GFPP contains two index parameters with admissible ranges 0 < β ≤ 1, α > 0 and a parameter characterizing the time scale. The GFPP involves Prabhakar generalized Mittag-Leffler functions and contains for special choices of the parameters the Laskin fractional Poisson process, the Erlang process and the standard Poisson process. We demonstrate this by means of explicit formulas. We develop the Montroll-Weiss continuous-time random walk (CTRW) for the GFPP on undirected networks which has Prabhakar distributed waiting times between the jumps of the walker. For this walk, we derive a generalized fractional Kolmogorov-Feller equation which involves Prabhakar generalized fractional operators governing the stochastic motions on the network. We analyze in d dimensions the ‘well-scaled’ diffusion limit and obtain a fractional diffusion equation which is of the same type as for a walk with Mittag-Leffler distributed waiting times. The GFPP has the potential to capture various aspects in the dynamics of certain complex systems.

Publisher

Walter de Gruyter GmbH

Subject

Applied Mathematics,Analysis

Reference65 articles.

1. C.N. Angstmann, B.I. Henry, B.A. Jacobs, A.V. McGann, A time-fractional generalised advection equation from a stochastic process. Chaos, Solitons & Fractals102 (2017), 175–183.

2. E. Barkai, Y.-C. Cheng, Aging continuous time random walks. J. Chem. Phys. 118 (2003), Art. # 6167.

3. E. Barkai, R. Metzler, and J. Klafter, From continuous time random walks to the fractional Fokker-Planck equation. Phys. Rev. E61, No 1 (2000), Art. # 132.

4. L. Beghin, E. Orsingher, Fractional Poisson processes and related random motions. Electron. J. Probab. 14 (2009), Art. # 61, 1790–1826.

5. J.D. Bryngelson, P.G. Wolynes, Intermediates and barrier crossing in a random energy model (with applications to protein folding). J. Chem. Phys. 93 (1989), Art. # 19, 6902–6915.

Cited by 15 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3