A survey on numerical methods for spectral Space-Fractional diffusion problems

Author:

Harizanov Stanislav1,Lazarov Raytcho2,Margenov Svetozar1

Affiliation:

1. Institute of Information and Communication Technologies Bulgarian Academy of Sciences Acad. G. Bontchev Str., Block 25A, 1113Sofia, Bulgaria

2. Texas A&M University, Department of Mathematics 505 D Blocker Build. 77843 College Station, TX, USA

Abstract

AbstractThe survey is devoted to numerical solution of the equation $ {\mathcal A}^\alpha u=f $, 0 < α<1, where $ {\mathcal A} $ is a symmetric positive definite operator corresponding to a second order elliptic boundary value problem in a bounded domain Ω in ℝd. The fractional power $ {\mathcal A}^\alpha $ is a non-local operator and is defined though the spectrum of $ {\mathcal A} $. Due to growing interest and demand in applications of sub-diffusion models to physics and engineering, in the last decade, several numerical approaches have been proposed, studied, and tested. We consider discretizations of the elliptic operator $ {\mathcal A} $ by using an N-dimensional finite element space Vh or finite differences over a uniform mesh with N points. In the case of finite element approximation we get a symmetric and positive definite operator $ {\mathcal A}_h: V_h \to V_h $, which results in an operator equation $ {\mathcal A}_h^{\alpha} u_h = f_h $ for uh ∈ Vh.The numerical solution of this equation is based on the following three equivalent representations of the solution: (1) Dunford-Taylor integral formula (or its equivalent Balakrishnan formula, (2.5), (2) extension of the a second order elliptic problem in Ω  ×  (0, ∞)⊂ ℝd+1 [17,55] (with a local operator) or as a pseudo-parabolic equation in the cylinder (x, t) ∈ Ω  ×  (0, 1), [70, 29], (3) spectral representation (2.6) and the best uniform rational approximation (BURA) of zα on [0, 1], [37,40].Though substantially different in origin and their analysis, these methods can be interpreted as some rational approximation of $ {\mathcal A}_h^{-\alpha} $. In this paper we present the main ideas of these methods and the corresponding algorithms, discuss their accuracy, computational complexity and compare their efficiency and robustness.

Publisher

Walter de Gruyter GmbH

Subject

Applied Mathematics,Analysis

Cited by 19 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3