Analysis of fractional integro-differential equations with nonlocal Erdélyi-Kober type integral boundary conditions

Author:

Duraisamy Palanisamy1,Gopal Thangaraj Nandha2,Subramanian Muthaiah3

Affiliation:

1. Dept. of Mathematics , Gobi Arts & Science College , Gobichettipalayam , Tamilnadu , India

2. Dept. of Mathematics , Sri Ramakrishna Mission Vidyalaya College of Arts and Science , Coimbatore , Tamilnadu , India

3. Dept. of Mathematics , KPR Institute of Engineering and Technology , Coimbatore , Tamilnadu , India

Abstract

Abstract In this article, we study the existence and uniqueness of solutions for nonlinear fractional integro-differential equations with nonlocal Erdélyi-Kober type integral boundary conditions. The existence results are based on Krasnoselskii’s and Schaefer’s fixed point theorems, whereas the uniqueness result is based on the contraction mapping principle. Examples illustrating the applicability of our main results are also constructed.

Publisher

Walter de Gruyter GmbH

Subject

Applied Mathematics,Analysis

Reference20 articles.

1. B. Ahmad, S.K. Ntouyas, J. Tariboon, A. Alsaedi, Caputo type fractional differential equations with nonlocal Riemann-Liouville and Erdélyi-Kober type integral boundary conditions. Filomat31, No 14 (2017), 4515–4529; 10.2298/FIL1714515A.

2. B. Ahmad, S.K. Ntouyas, J. Tariboon, A. Alsaedi, A study of nonlinear fractional-order boundary value problem with nonlocal Erdélyi-Kober and generalized Riemann-Liouville type integral boundary conditions. Math. Model. Anal. 22, No 2 (2017), 121–139; 10.3846/13926292.2017.1274920.

3. M. Concezzi, R. Garra, R. Spigler, Fractional relaxation and fractional oscillation models involving Erdélyi-Kober integrals. Fract. Calc. Appl. Anal. 18, No 5 (2015), 1212–1231; 10.1515/fca-2015-0070; https://www.degruyter.com/view/journals/fca/18/5/fca.18.issue-5.xml.

4. P. Duraisamy, T. Nandha Gopal, Existence results for fractional delay integro-differential equations with multi-point boundary conditions. Malaya J. of Mathematik7, No 1 (2019), 96–103; 10.26637/MJM0701/0019.

5. P. Duraisamy, S. Hemalatha, P. Manimekalai, T. Nandha Gopal, Some results on fractional integro-differential equations with Riemann-Liouville fractional integral boundary conditions. J. Phys. Conf. Ser. 1139, No 1 (2018), # 012015; 10.1088/1742-6596/1139/1/012015.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3