On interpolation of reflexive variable Lebesgue spaces on which the Hardy–Littlewood maximal operator is bounded

Author:

Diening Lars1ORCID,Karlovych Oleksiy2ORCID,Shargorodsky Eugene3ORCID

Affiliation:

1. Fakultät für Mathematik , Universität Bielefeld , Postfach 10 01 31, 33501 Bielefeld , Germany

2. Departamento de Matemática , Centro de Matemática e Aplicações, Faculdade de Ciências e Tecnologia , Universidade Nova de Lisboa , Quinta da Torre, 2829–516 Caparica , Portugal

3. Department of Mathematics , King’s College London , Strand , London WC2R 2LS , United Kingdom ; and Technische Universität Dresden, Fakultät Mathematik, 01062 Dresden, Germany

Abstract

Abstract We show that if the Hardy–Littewood maximal operator M is bounded on a reflexive variable exponent space L p ( ) ( d ) {L^{p(\,\cdot\,)}(\mathbb{R}^{d})} , then for every q ( 1 , ) {q\in(1,\infty)} , the exponent p ( ) {p(\,\cdot\,)} admits, for all sufficiently small θ > 0 {\theta>0} , the representation 1 p ( x ) = θ q + 1 - θ r ( x ) {\frac{1}{p(x)}=\frac{\theta}{q}+\frac{1-\theta}{r(x)}} , x d {x\in\mathbb{R}^{d}} , such that the operator M is bounded on the variable Lebesgue space L r ( ) ( d ) {L^{r(\,\cdot\,)}(\mathbb{R}^{d})} . This result can be applied for transferring properties like compactness of linear operators from standard Lebesgue spaces to variable Lebesgue spaces by using interpolation techniques.

Publisher

Walter de Gruyter GmbH

Subject

General Mathematics

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3