On the convergence of a three-layer semi-discrete scheme for the nonlinear dynamic Kirchhoff string equation

Author:

Vashakidze Zurab1ORCID

Affiliation:

1. School of Science and Technology , Institute of Mathematics , The University of Georgia , 77a M. Kostava St.; and Ilia Vekua Institute of Applied Mathematics of Ivane Javakhishvili Tbilisi State University, 2 University St. , Tbilisi 0186 , Georgia

Abstract

Abstract In this work, the initial-boundary value problem is considered for the dynamic Kirchhoff string equation u t t - ( α ( t ) + β - 1 1 u x 2 d x ) u x x = f u_{tt}-\bigl{(}\alpha(t)+\beta\int_{-1}^{1}u_{x}^{2}\,\mathrm{d}x\bigr{)}u_{xx}=f . Here α ( t ) \alpha(t) is a continuously differentiable function, α ( t ) c 0 > 0 \alpha(t)\geq\mathrm{c}_{0}>0 and 𝛽 is a positive constant. For solving this problem approximately, a symmetric three-layer semi-discrete scheme with respect to the temporal variable is applied, in which the value of a nonlinear term is taken at the middle point. This approach allows us to find numerical solutions per temporal steps by inverting the linear operators. In other words, applying this scheme, a system of linear ordinary differential equations is obtained. The local convergence of the scheme is proved. The results of numerical computations using this scheme for different test problems are given for which the Legendre–Galerkin spectral approximation is applied with respect to the spatial variable.

Funder

Shota Rustaveli National Science Foundation

Publisher

Walter de Gruyter GmbH

Subject

General Mathematics

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. On convergence of a three‐layer semi‐discrete scheme for the non‐linear dynamic string equation of Kirchhoff‐type with time‐dependent coefficients;ZAMM - Journal of Applied Mathematics and Mechanics / Zeitschrift für Angewandte Mathematik und Mechanik;2024-02-04

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3