On linear spline algorithms of computerized tomography in the space of n-orbits

Author:

Ugulava Duglas1,Zarnadze David1

Affiliation:

1. Muskhelishvili Institute of Computational Mathematics , Georgian Technical University , 4 G. Peradze Str. , Tbilisi 0159 , Georgia

Abstract

Abstract We fix a continuous linear operator A : H M {A:H\rightarrow M} acting between the Hilbert spaces H and M that admits a singular value decomposition (SVD). We consider the following ill-posed problem: for an element f M {f\in M} , find u H {u\in H} such that A u = f {Au=f} and a generalized solution in the sense of Moore–Penrose u is sought that satisfies the equation A * A u = A * f {A^{*}Au=A^{*}f} . Moreover, we fix an integer n 0 = { 0 , 1 , 2 , } {n\in\mathbb{N}_{0}=\{0,1,2,\dots\}} and transfer this equation to a special Hilbert space D ( ( A * A ) - n ) {D((A^{*}A)^{-n})} of n-orbits. For an approximate solution of this equation in the case of a nonadaptive information on the right-hand side f, a linear spline algorithm is constructed. The specificity of the considered norm is that the approximate solution is the truncated singular value decomposition (TSVD) and does not depend on n. In the case n = 0 {n=0} , the space D ( ( A * A ) - n ) {D((A^{*}A)^{-n})} coincides with H and we obtain the results for the latter space. In the limiting case of the Fréchet–Hilbert space of all orbits D ( ( A * A ) - ) {D((A^{*}A)^{-\infty})} , the equation A * A u = A * f {A^{*}Au=A^{*}f} becomes well-posed and was considered in [D. Ugulava and D. Zarnadze, On a linear generalized central spline algorithm of computerized tomography, Proc. A. Razmadze Math. Inst. 168 2015, 129–148]. It is also noted that the space D ( ( A * A ) - ) {D((A^{*}A)^{-\infty})} is the projective limit of the sequence of Hilbert spaces { D ( ( A * A ) - n ) } {\{D((A^{*}A)^{-n})\}} . The application of the obtained results for the computerized tomography problem, i.e., for the inversion of the Radon transform {\mathfrak{R}} with the SVD of Louis [A. K. Louis, Orthogonal function series expansions and the null space of the Radon transform, SIAM J. Math. Anal. 15 1984, 3, 621–633] in the space D ( ( * ) - n ) ) {D((\mathfrak{R}^{*}\mathfrak{R})^{-n}))} is given.

Publisher

Walter de Gruyter GmbH

Subject

General Mathematics

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3