Affiliation:
1. Graduate School of Advanced Science and Engineering, Hiroshima University , Higashihiroshima , 739-8527 , Japan
Abstract
Abstract
On a smooth bounded domain we study the Trudinger-Moser functional
E
α
(
u
)
≔
∫
Ω
(
e
α
u
2
−
1
)
d
x
,
u
∈
H
1
(
Ω
)
{E}_{\alpha }\left(u):= \mathop{\int }\limits_{\Omega }({e}^{\alpha {u}^{2}}-1){\rm{d}}x,\hspace{1.0em}u\in {H}^{1}\left(\Omega )
for
α
∈
(
0
,
2
π
)
\alpha \in \left(0,2\pi )
and its restriction
E
α
∣
Σ
λ
{E}_{\alpha }{| }_{{\Sigma }_{\lambda }}
, where
Σ
λ
≔
u
∈
H
1
(
Ω
)
∣
∫
Ω
(
∣
∇
u
∣
2
+
λ
u
2
)
d
x
=
1
{\Sigma }_{\lambda }:= \left\{u\in {H}^{1}\left(\Omega )| {\int }_{\Omega }(| \nabla u{| }^{2}+\lambda {u}^{2}){\rm{d}}x=1\right\}
for
λ
>
0
\lambda \gt 0
. By applying the asymptotic analysis and the variational method, we obtain asymptotic behavior of critical points of
E
α
∣
Σ
λ
{E}_{\alpha }{| }_{{\Sigma }_{\lambda }}
both as
λ
→
0
\lambda \to 0
and as
λ
→
+
∞
\lambda \to +\infty
. In particular, we prove that when
α
\alpha
is sufficiently small, maximizers for
sup
u
∈
Σ
λ
E
α
(
u
)
{\sup }_{u\in {\Sigma }_{\lambda }}{E}_{\alpha }\left(u)
tend to 0 in
C
(
Ω
¯
)
C\left(\overline{\Omega })
as
λ
→
+
∞
\lambda \to +\infty
.
Subject
General Mathematics,Statistical and Nonlinear Physics
Reference23 articles.
1. L. Carleson and S.-Y. A. Chang, On the existence of an extremal function for an inequality of J. Moser. (French summary) Bull. Sci. Math. (2) 110 (1986), no. 2, 113–127.
2. L. Chen, G. Lu, and M. Zhu, A critical Trudinger-Moser inequality involving a degenerate potential and nonlinear Schrödinger equations, (English summary) Sci. China Math. 64 (2021), no. 7, 13911410.
3. L. Chen, G. Lu, and M. Zhu, Sharp Trudinger-Moser inequality and ground state solutions to quasi-linear Schrödinger equations with degenerate potentials in Rn, (English summary) Adv. Nonlinear Stud. 21 (2021), no. 4, 733–749.
4. L. Chen, G. Lu, and M. Zhu, Existence and nonexistence of extremals for critical Adams inequalities in R4 and Trudinger-Moser inequalities in R2, (English summary) Adv. Math. 368 (2020), 107143, 61 pp.
5. W. X. Chen and C. Li, Classification of solutions of some nonlinear elliptic equations, Duke Math. J. 63 (1991), no. 3, 615–622.
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献