Affiliation:
1. Department of Mathematics, University of Chicago, 5734 S University Ave , Chicago IL , 60637 , United States
Abstract
Abstract
In this article, we prove a Carleman inequality on a product manifold
M
×
R
M\times {\mathbb{R}}
. As applications, we prove that (1) a periodic harmonic function on
R
2
{{\mathbb{R}}}^{2}
that decays faster than all exponential rate in one direction must be constant 0, (2) a periodic minimal hypersurface in
R
3
{{\mathbb{R}}}^{3}
that has an end asymptotic to a hyperplane faster than all exponential rate in one direction must be a hyperplane, and (3) a periodic translator in
R
3
{{\mathbb{R}}}^{3}
that has an end asymptotic to a hyperplane faster than all exponential rates in one direction must be a translating hyperplane.
Subject
General Mathematics,Statistical and Nonlinear Physics
Reference22 articles.
1. S. Alinhac and M. S. Baouendi, Uniqueness for the characteristic Cauchy problem and strong unique continuation for higher order partial differential inequalities, Am. J. Math. 102 (1980), no. 1, 179–217.
2. N. Aronszajn, A. Krzywicki, and J. Szarski, A unique continuation theorem for exterior differential forms on Riemannian manifolds, Ark. Mat. 4 (1962), 417–453.
3. J. Bourgain and C. E. Kenig, On localization in the continuous Anderson-Bernoulli model in higher dimension, Inventiones Math. 161 (2005), no. 2, 389–426.
4. T. Carleman, Sur un problème d’unicité pur les systèmes d’équations aux dérivées partielles á deux variables indépendantes, (French) Ark. Mat. Astr. Fys. 26 (1939). no. 17, 9.
5. T. H. Colding C. De Lellis, and W. P. Minicozzi II, Three circles theorems for Schrödinger operators on cylindrical ends and geometric applications, Comm. Pure Appl. Math. 61 (2008), no. 11, 1540–1602.
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献