Principal eigenvalue problem for infinity Laplacian in metric spaces
Author:
Affiliation:
1. Geometric Partial Differential Equations Unit, Okinawa Institute of Science and Technology Graduate University , Okinawa 904-0495 , Japan
2. Department of Applied Mathematics, Faculty of Science, Fukuoka University , Fukuoka , Japan
Abstract
Publisher
Walter de Gruyter GmbH
Subject
General Mathematics,Statistical and Nonlinear Physics
Link
https://www.degruyter.com/document/doi/10.1515/ans-2022-0028/pdf
Reference54 articles.
1. L. Ambrosio and J. Feng, On a class of first order Hamilton-Jacobi equations in metric spaces, J. Differ. Equ. 256 (2014), no. 7, 2194–2245.
2. L. Ambrosio and S. Honda, New stability results for sequences of metric measure spaces with uniform Ricci bounds from below, In: Measure Theory in Non-Smooth Spaces, Partial Differential Equations and Measure Theory, De Gruyter Open, Warsaw, 2017, pp. 1–51.
3. S. N. Armstrong and C. K. Smart, A finite difference approach to the infinity Laplace equation and tug-of-war games, Trans. Amer. Math. Soc. 364 (2012), no. 2, 595–636.
4. G. Aronsson, M. G. Crandall, and P. Juutinen, A tour of the theory of absolutely minimizing functions, Bull. Amer. Math. Soc. (N.S.) 41 (2004), no. 4, 439–505.
5. M. Belloni and B. Kawohl, The pseudo-p-Laplace eigenvalue problem and viscosity solutions as p→∞, ESAIM Control Optim. Calc. Var. 10 (2004), no. 1, 28–52.
Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. X-ray weld defect detection method based on dense connection and multi-scale pooling;Chinese Journal of Liquid Crystals and Displays;2024
1.学者识别学者识别
2.学术分析学术分析
3.人才评估人才评估
"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370
www.globalauthorid.com
TOP
Copyright © 2019-2024 北京同舟云网络信息技术有限公司 京公网安备11010802033243号 京ICP备18003416号-3