Linear extension operators for Sobolev spaces on radially symmetric binary trees

Author:

Fefferman Charles1,Klartag Bo’az2

Affiliation:

1. Department of Mathematics, Princeton University, Fine Hall, Washington Road , Princeton , New Jersey 08544 , USA

2. Department of Mathematics, Weizmann Institute of Science , Rehovot 7610001 , Israel

Abstract

Abstract Let 1 < p < 1\lt p\lt \infty and suppose that we are given a function f f defined on the leaves of a weighted tree. We would like to extend f f to a function F F defined on the entire tree, so as to minimize the weighted W 1 , p {W}^{1,p} -Sobolev norm of the extension. An easy situation is when p = 2 p=2 , where the harmonic extension operator provides such a function F F . In this note, we record our analysis of the particular case of a radially symmetric binary tree, which is a complete, finite, binary tree with weights that depend only on the distance from the root. Neither the averaging operator nor the harmonic extension operator work here in general. Nevertheless, we prove the existence of a linear extension operator whose norm is bounded by a constant depending solely on p p . This operator is a variant of the standard harmonic extension operator, and in fact, it is harmonic extension with respect to a certain Markov kernel determined by p p and by the weights.

Publisher

Walter de Gruyter GmbH

Subject

General Mathematics,Statistical and Nonlinear Physics

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3