Existence of nonminimal solutions to an inhomogeneous elliptic equation with supercritical nonlinearity

Author:

Ishige Kazuhiro1,Okabe Shinya2,Sato Tokushi3

Affiliation:

1. Graduate School of Mathematical Sciences, The University of Tokyo, 3-8-1 Komaba , Meguro-ku , Tokyo 153-8914 , Japan

2. Mathematical Institute, Tohoku University , Aoba , Sendai 980-8578 , Japan

3. Department of Mathematics, Miyagi University of Education , Aoba , Sendai 980-0845 , Japan

Abstract

Abstract In our previous paper [K. Ishige, S. Okabe, and T. Sato, A supercritical scalar field equation with a forcing term, J. Math. Pures Appl. 128 (2019), pp. 183–212], we proved the existence of a threshold κ > 0 {\kappa }^{\ast }\gt 0 such that the elliptic problem for an inhomogeneous elliptic equation Δ u + u = u p + κ μ -\Delta u+u={u}^{p}+\kappa \mu in R N {{\bf{R}}}^{N} possesses a positive minimal solution decaying at the space infinity if and only if 0 < κ κ 0\lt \kappa \le {\kappa }^{\ast } . Here, N 2 N\ge 2 , μ \mu is a nontrivial nonnegative Radon measure in R N {{\bf{R}}}^{N} with a compact support, and p > 1 p\gt 1 is in the Joseph-Lundgren subcritical case. In this article, we prove the existence of nonminimal positive solutions to the elliptic problem. Our arguments are also applicable to inhomogeneous semilinear elliptic equations with exponential nonlinearity.

Publisher

Walter de Gruyter GmbH

Subject

General Mathematics,Statistical and Nonlinear Physics

Reference20 articles.

1. S. Adachi and K. Tanaka, Four positive solutions for the semilinear elliptic equation: −Δu+u=a(x)up+f(x) in RN, Calc. Var. Partial Differential Equations 11 (2000), 63–95.

2. S. Adachi and K. Tanaka, Existence of positive solutions for a class of nonhomogeneous elliptic equations in RN, Nonlinear Anal. Ser. A Theory Methods 48 (2002), 685–705.

3. K-J. Chen, Exactly two entire positive solutions for a class of nonhomogeneous elliptic equations, Differential Integral Equations 17 (2004), 1–16.

4. K-J. Chen, Bifurcation and multiplicity results for a nonhomogeneous semilinear elliptic problem, Electron. J. Differential Equations 2008 (2008), no. 152, 19.

5. L. C. Evans, Partial differential equations, Graduate Studies in Mathematics, vol. 19, 2nd edn, American Mathematical Society, Providence, RI, 2010, xxii.749.

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Supercritical Hénon-type equation with a forcing term;Advances in Nonlinear Analysis;2024-01-01

2. Semilinear elliptic problems on the half space with a supercritical nonlinearity;Discrete and Continuous Dynamical Systems;2024

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3