Affiliation:
1. Tsinghua University, Yau Mathematical Sciences Center , Beijing , China
Abstract
Abstract
In the present article, we investigate the following Hénon-Lane-Emden elliptic system:
−
Δ
u
=
∣
x
∣
a
v
p
,
x
∈
R
N
,
−
Δ
v
=
∣
x
∣
b
u
q
,
x
∈
R
N
,
\left\{\begin{array}{ll}-\Delta u={| x| }^{a}{v}^{p},& x\in {{\mathbb{R}}}^{N},\\ -\Delta v={| x| }^{b}{u}^{q},& x\in {{\mathbb{R}}}^{N},\end{array}\right.
where
N
≥
2
N\ge 2
,
p
p
,
q
>
0
q\gt 0
,
a
a
,
b
∈
R
b\in {\mathbb{R}}
. We partially prove the Hénon-Lane-Emden conjecture in the case of four and five dimensions. More specifically, we show that there is no nonnegative nontrivial classical solution for the Hénon-Lane-Emden elliptic system when
a
a
,
b
>
−
2
b\gt -2
and the parameter pair (
p
,
q
p,q
) meets
p
q
>
1
,
N
+
a
p
+
1
+
N
+
b
q
+
1
>
N
−
2
,
pq\gt 1,\hspace{1.0em}\frac{N+a}{p+1}+\frac{N+b}{q+1}\gt N-2,
and additionally
p
,
q
<
4
/
3
p,q\lt 4\hspace{0.1em}\text{/}\hspace{0.1em}3
if
N
=
4
N=4
or
p
,
q
<
10
/
9
p,q\lt 10\hspace{0.1em}\text{/}\hspace{0.1em}9
if
N
=
5
N=5
.
Subject
General Mathematics,Statistical and Nonlinear Physics