Kinetic Modeling and Optimization of Immobilized Candida antarctica Lipase B Catalysed Synthesis of Butyl-4-Methyl-3-Oxopentanoate using Response Surface Methodology

Author:

Yadav Ganapati D.,Shinde Somnath Dattatray

Abstract

Abstract Response surface methodology (RSM) was used to model and optimize the immobilized Candida antarctica lipase B catalysed synthesis of butyl-4-methyl-3-oxopentanoate. To determine optimum conditions of the transesterification, a four-factor and five-level central composite rotatable design (CCRD) was used. The factors studied were enzyme load (A), reaction temperature (B), methyl-4-methyl-3-oxopentanoate concentration (C) and n-butanol concentration (D). A quadratic polynomial regression model was used to analyze the experimental data at a 95% confidence level (p < 0.05). The results indicated that the RSM approach gave reasonable results for the optimization of the reaction parameters in the range of tested parameters. The optimal conditions for the enzymatic reaction were obtained at 0.01 mol of methyl-4-methyl-3-oxopentanoate and 0.03 mol of n-butanol using 104 mg of Novozym 435 at 55 °C and 300 rpm for 6 h. Under these conditions, the transesterification percentage was 87 %. Further, kinetic modelling of the enzymatic synthesis was illustrated. Initial rate data and progress curve data were used to arrive at a suitable model. The kinetics was found to obey the ternary complex ordered bi-bi model with inhibition by the substrate methyl-4-methyl-3-oxopentanoate. The values of kinetic parameters obtained from nonlinear regression analysis were found to be Vmax of 0.04 mol/L.min; Km(A) 0.11 mol/L; Km(B) 2 mol/L and Ki(A) 2.2 mol/L.

Publisher

Walter de Gruyter GmbH

Subject

General Chemical Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3