Abstract
Rate-based models suitable for equipment or transport-reaction modeling require a capability for predicting transport coefficients over a sufficient range of temperature and pressure. This paper demonstrates a relatively simple novel approach to correlate and estimate transport coefficients for pure components over the entire fluid region.The use of Chapman-Enskog transport coefficients for reducing self-diffusion coefficient and viscosity to dimensionless form results in relatively simple mathematical relationships between component dimensionless transport coefficients and residual entropy over the entire fluid region. Dimensionless self-diffusion coefficients and viscosities were calculated from extensive molecular dynamics simulation data and experimental data on argon, methane, ethylene, ethane, propane, and n-decane. These dimensionless transport coefficients were plotted against dimensionless residual entropy calculated from highly accurate reference equations of state.Based on experimental data, the new scaling model introduced here shows promise as: (1) an equation of state-based transport coefficient correlation over the entire fluid region (liquid, gas, and critical fluid), (2) a component transport coefficient correlation for testing transport data consistency, and (3) a component transport coefficient correlation for interpolation and extrapolation of self-diffusion coefficient and viscosity.
Subject
General Chemical Engineering
Cited by
25 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献