Modeling of Diesel Particulate Filter Regeneration under the Urban Dynamometer Driving Schedule

Author:

Huang Di,Keith Jason M.

Abstract

Abstract Particulate Matter (PM) emissions from either on-road or off-road diesel engines are subject to federal and/or state standards. Recently, Diesel Particulate Filters (DPF) have been shown to be the most efficient way to reduce the PM emissions. However, DPFs need to be regenerated periodically. In order to predict when to regenerate the DPF under real-time driving conditions, a regeneration model for the DPF is needed. In this study, a transient one-dimensional model is used to track gas and solid temperatures and the particulate deposit thickness, and is studied under the Urban Dynamometer Driving Schedule (UDDS) which has variable exhaust flow rate, exhaust temperature, and PM concentration. In order to determine the best conditions, the thermal regeneration is initiated at different time points during the UDDS cycle. Moreover, we also calculate the transient temperature profile and the deposit thickness for each case. We found that the regeneration efficiency is the highest when the regeneration is initiated at 180 seconds into the UDDS cycle which corresponds to a period of extended city driving without stopping.

Publisher

Walter de Gruyter GmbH

Subject

General Chemical Engineering

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3