A new machine-learning-based prediction of survival in patients with end-stage liver disease

Author:

Gibb Sebastian12ORCID,Berg Thomas3,Herber Adam3,Isermann Berend2,Kaiser Thorsten42

Affiliation:

1. Anesthesiology and Intensive Care Medicine, University Hospital Greifswald , Greifswald , Germany

2. Institute of Laboratory Medicine, Clinical Chemistry and Molecular Diagnostics, University Hospital Leipzig , Leipzig , Germany

3. Section of Hepatology, Department of Gastroenterology and Rheumatology , University Hospital Leipzig , Leipzig , Germany

4. Institute of Laboratory Medicine, Microbiology and Clinical Pathobiochemistry, University Hospital OWL, Hospital Lippe , Detmold , Germany

Abstract

Abstract Objectives The shortage of grafts for liver transplantation requires risk stratification and adequate allocation rules. This study aims to improve the model of end-stage liver disease (MELD) score for 90-day mortality prediction with the help of different machine-learning algorithms. Methods We retrospectively analyzed the clinical and laboratory data of 654 patients who were recruited during the evaluation process for liver transplantation at University Hospital Leipzig. After comparing 13 different machine-learning algorithms in a nested cross-validation setting and selecting the best performing one, we built a new model to predict 90-day mortality in patients with end-stage liver disease. Results Penalized regression algorithms yielded the highest prediction performance in our machine-learning algorithm benchmark. In favor of a simpler model, we chose the least absolute shrinkage and selection operator (lasso) regression. Beside the classical MELD international normalized ratio (INR) and bilirubin, the lasso regression selected cystatin C over creatinine, as well as IL-6, total protein, and cholinesterase. The new model offers improved discrimination and calibration over MELD and MELD with sodium (MELD-Na), MELD 3.0, or the MELD-Plus7 risk score. Conclusions We provide a new machine-learning-based model of end-stage liver disease that incorporates synthesis and inflammatory markers and may improve the classical MELD score for 90-day survival prediction.

Funder

Sächsische Aufbaubank

Publisher

Walter de Gruyter GmbH

Subject

Biochemistry (medical),Clinical Biochemistry,Discrete Mathematics and Combinatorics

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Survival Prediction of Cirrhosis Patients Using Polynomial Features and Differential Evolution;2024 Tenth International Conference on Bio Signals, Images, and Instrumentation (ICBSII);2024-03-20

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3