The Mode of Action of Photosystem II-Specific Inhibitors in Herbicide-Resistant Weed Biotypes

Author:

Pfister Klaus,Arntzen Charles J.

Abstract

Abstract This report reviews studies which provide evidence defining the mode of action and site of action of photosystem II (PS II) herbicides; the involvement of the secondary electron carrier on the reducing side of PS II (called B) is indicated as the target site for these compounds. These studies of the action of PS II-inhibitors were performed in chloroplasts of various weed species in order to define the mechanism which is responsible for herbicide tolerance at the level of chloroplast membranes in newly discovered triazine-resistant weed biotypes. Many species of triazine-resistant weed biotypes have been collected in North America and Europe. Where data is available, these plants have been found to share the following common features: a) they were discovered in areas where triazine herbicides had been used repeatedly, b) resistance to the triazines is extreme; it is not due to a minor shift in herbicidal response, c) no changes in herbicide uptake, translocation or metabolism - as compared to susceptible biotypes - can be detected, d) resistance is selective for only certain classes of photosynthetic herbicides, and, e) chloroplasts isolated from triazine-resistant weeds display high preferential resistance to the triazines in assays of photosystem II partial reactions. To focus on the mechanism which regulates preferential herbicide activity, we have characterized susceptible and resistant chloroplasts in the presence and absence of herbicides. Properties of the PS II complex of chloroplasts from several different triazine-resistant weed biotypes share the following traits: a) the herbicide binding site (as measured by direct binding of radiolabeled herbicides or by inhibition experiments) is modified such that the affinity for triazines is dramatically reduced. b) alterations in response to many PS II-herbicides occur such that the triazine-resistant chloroplasts are very strongly resistant to all symmetrical triazines, strongly resistant to assymmetrical triazinones, partially resistant to pyridazones and uracils, only slightly resistant to ureas or amides, and increasingly susceptible to nitrophenols, phenols and the herbicide bentazon (all as compared to susceptible chloroplasts), c) there is a change in the reaction kinetics of the electron transport step between the primary and secondary electron acceptors (referred to as Q and B ), and d) in two examples, specific small changes in a membranepolypeptide can be detected in the resistant thylakoids. We suggest that certain amino acids or segments of the apoprotein of B (the bound quinone which acts as the secondary electron carrier) are modified or deleted in these chloroplasts. Such a polypeptide change could affect both the redox poising of the Q-/B reaction pair, and the specific binding of herbicides.

Publisher

Walter de Gruyter GmbH

Subject

General Biochemistry, Genetics and Molecular Biology

Cited by 202 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3