Purification and Characterization of a 3,17 β-Hydroxysteroid Dehydrogenase from Streptomyces hydrogenans

Author:

Duchmann Helmut1,Träger Lothar1

Affiliation:

1. 1Zentrum der Biologischen Chemie der Universität Frankfurt/M., Abteilung für Biochemie der Hormone, Theodor-Stern-Kai 7, D-6000 Frankfurt/M. 70

Abstract

3,17 β-Hydroxysteroid dehydrogenase has been enriched and purified from cytosol of Streptomyces hydrogenans. After ammonium sulfate precipitation and filtration on Sephadex G-100 the enzyme was finally purified by preparative gel electrophoresis and DEAE-Sephadex A-50 chro­matography. Polyacrylamide gel electrophoresis in the presence of sodium dodecylsulfate gave a single band of mobility corresponding to molecular weight of 70 200 ± 2 500. 3 β-. 17 β- as well as 20 β-hydroxy steroids were dehydrogenated by the enzyme in the presence of NAD+. The dehydrogenation proceeded faster than the reduction of the corresponding ketosteroids in the presence of NADH. The enzyme does not accent NADP+ or NADPH as co-substrates. The apparent Km values were calculated to be 11 μᴍ for 5 α-dihydrotestosterone, 20 μᴍ for testosterone ana 68 μᴍ for epiandrosterone in the NAD+-driven reaction, 1.8 x 10-4 m for NADH+ and 1.9 x 10-4 ᴍ for NADH. The catalytic activity was influenced by the ratio of NAD+/ATP. The inhibition by ATP appears to be of a competitive type with respect to NAD+ (Ki 1.15 x 10-3 ᴍ).After sucrose gradient centrifugation in a preparative ultracentrifuge the enzyme sediments with 4.1 ± 0.1 S as estimated in comparison to other proteins of known sedimentation coefficient. The isoelectric point was determined to be 3.9 with the LKB preparative isoelectric focusing col­umn (pH 2-11) and 4.1 with the analytical flat bed polyacrylamide isofocusing (pH 3 - 5). The number of SH groups was determined to be 2 mol/mol enzyme. In the presence of 6 M urea the fig­ure inceases to 3 mol SH/mol enzyme. In the presence of an excess of p-chloromercuribenzoate the enzyme activity decreases only partially.

Publisher

Walter de Gruyter GmbH

Subject

General Biochemistry, Genetics and Molecular Biology

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3