Affiliation:
1. 1Zoologisches Institut der Universität, Im Neuenheim er Feld 230, D-6900 Heidelberg 1
Abstract
In current theories of polyacrylamide gel electrophoresis, the idea prevails that molecular sieving relies on different accessibility of volume fractions and of cross-sectional area fractions (denoted “pores”) to different-sized ions due to the effect of “geometric exclusion”. This correlates with the assumption that all elements of a polyacrylamide network occupy fixed and unchangeable positions thus forcing colliding macro-ions to diffuse laterally in order to find an “accessible pore” and to resume motion in direction of the electrical field. However, the alternative conception would be equally well justified, i. e. the assumption that polyacrylamide chains represent smooth obstacles cleared aside under the electrokinetic pressure of a macro-ion. This explanation would even be preferable with respect to the molecular sieving effects occuring in solutions of “liquid polyacrylamide”. Yet no theory exists as to describe such effects in quantitative terms.In the present article, a parameter is defined and discussed, which can be estimated by experiment, and which seems to be apt to characterize local resistivity of polymer structures against dislocation and deformation: the “fractional specific resistance”. Definition of this parameter is based on the model of a “viscosity-emulsion” composed of two interpenetrating liquid compartments which are characterized by different levels of hydrodynamic friction and the spatial dimensions of which are inferred from Ogston’s theory. This concept of “localized viscosity” may also serve as a link between theories of molecular sieving and of “macroscopic viscosity” of flexible polymers. The data of Morris, formerly taken as verifications of the “rigid-pore” concept, are now interpreted in terms of four factors responsible for sizediscrimination: collision frequency, duration of single contacts, size-dependent frictional force, and the extent of cooperation among fibres, due to crosslinking and to simultanous contacts of several fibres to a single macro-ion. Some functions relevant for problems of molecular weight determination by gel electrophoresis are discussed in relation to the suggested model.
Subject
General Biochemistry, Genetics and Molecular Biology
Cited by
18 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献