Stress corrosion cracking of high-strength steels

Author:

Ramamurthy Sridhar,Atrens Andrej

Abstract

AbstractThe mechanisms of stress corrosion cracking (SCC) and hydrogen embrittlement were recently reviewed by Lynch in this journal. The present review, in contrast, focuses on the rate-limiting step of the SCC of low-alloy high-strength steels in water and particularly focuses on the influence of the applied stress rate on the SCC of low-alloy high-strength steels. Linearly increasing stress tests of low-alloy high-strength steels in distilled water indicated that the stress corrosion crack velocity increased with increasing applied stress rate until the maximum crack velocity, corresponding to vII in fracture mechanics tests in distilled water. Moreover, the crack velocity was dependent only on the applied stress rate and was not influenced by the steel composition. The rate-limiting step could be the rupture of a surface film, which would control the rate of metal dissolution and/or the production and transport of hydrogen to the crack tip or to the regions ahead of the crack tip.

Publisher

Walter de Gruyter GmbH

Subject

General Materials Science,General Chemical Engineering,General Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3