Prediction and mitigation of AC interference on the pipeline system

Author:

Thakur Ajit Kumar12ORCID,Arya Adarsh Kumar2,Sharma Pushpa3

Affiliation:

1. IOCL , A1 Sec1 , Noida , New Delhi 110049 , India

2. Department of Chemical Engineering , School of Engineering, UPES , Bidholi , Dehradun , Uttarakhand 248007 , India

3. Department of Petroleum Engineering , School of Engineering, UPES , Bidholi Campus Dehradun , Dehradun , Uttarakhand 248007 , India

Abstract

Abstract The purpose of this paper is to predict and mitigate AC interference on buried pipeline systems due to transmission lines. Modeling and field verification of AC interference is done. The article also presents the issue of optimizing the mitigation measures. The paper uses the field data on soil resistivity, transmission line, and pipeline details to develop a model using current distribution electromagnetic interference grounding and soil structure analysis (CDEGS) software to predict the AC interference on the pipeline system. The model is validated with field measurements, and post-mitigation measures are considered. Mitigation measures are optimized to develop an economical mitigation plan. The case demonstrates the use of modeling techniques to predict and mitigate AC interference on pipelines. The field validation of modeling results helps improve the modeling results and plan optimized mitigation measures. The study requires providing comprehensive field data relevant to the pipeline system under consideration. The accuracy of the field data may have a bearing on the outcome of the study. The study enables designing and optimizing mitigation measures using modeling. Comparisons with field measurements help achieve desired pipeline system integrity against AC corrosion.

Publisher

Walter de Gruyter GmbH

Subject

General Materials Science,General Chemical Engineering,General Chemistry

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3