The role of crack branching in stress corrosion cracking of aluminium alloys

Author:

Burnett Timothy L.,Holroyd N.J. Henry,Scamans Geoffrey M.,Zhou Xiaorong1,Thompson George E.1,Withers Philip J.

Affiliation:

1. 1School of Materials, University of Manchester, Manchester, M13 9PL, UK

Abstract

AbstractStress corrosion cracks of all types are characterised by extensive crack branching, and this is frequently used as the key failure analysis characteristic to identify this type of cracking. For aluminium alloys, stress corrosion cracking (SCC) is almost exclusively an intergranular failure mechanism. For plate and extruded components, this had led to the development of test procedures using double cantilever beam and compact tension precracked specimens that rely on the pancake grain shape to constrain cracking, so that fracture mechanics can be applied to the analysis of stress intensity and crack velocity and the evolution of a characteristic performance curve. We have used X-ray computed tomography to examine in detail SCC in aluminium alloys in three dimensions for the first time. We have found that crack branching limits the stress intensity at the crack tip as the applied stress is shared amongst a number of cracks that are held together by uncracked ligaments. We propose that the plateau region observed in the v-K curve is an artefact due to crack branching, and at the crack tips of the many crack branches, cracking essentially occurs at constant K almost irrespective of the crack length. We have amplified the crack branching effect by examining a sample where the long axis of the pancake grains was inclined to the applied stressing direction. Our results have profound implications for the future use of precracked specimens for SCC susceptibility testing and the interpretation of results from these tests.

Publisher

Walter de Gruyter GmbH

Subject

General Materials Science,General Chemical Engineering,General Chemistry

Reference62 articles.

1. Mechanical behaviour of a solid with many stress corrosion growing cracks;Le Poulain;J Mater Sci,2005

2. Correlative tomography;Burnett;Sci Rep,2014

3. Investigation of stress corrosion crack growth in Mg alloys using integral estimations Metallurg;Abramson;Trans,1985

4. Three - dimensional characterization of stress corrosion cracks;Lozano;J Nucl Mater,2011

5. Stress corrosion cracking under low stress : continuous or discontinuous cracks;Zhu;Corros Sci,2014

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3